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Preface

This report documents the development and initial applications of the Large-
scale Sediment Transport Facility (LSTF), which is located at the U.S. Army
Engineer Research and Development Center (ERDC), Coastal and Hydraulics
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applied research in the field of coastal sediment transport processes.  Work
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Investigation of Longshore Sediment Transport,� which is under the Coastal
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Mr. Bruce A. Ebersole, Chief, Coastal Processes Branch (CPB), ERDC, served
as the Contracting Officer�s Representative for the contract during this time, and
he monitored planning, design, construction, and application of the facility.
Ms. Julie D. Rosati, Research Hydraulic Engineer, CPB, was the Principal
Investigator of the Large-Scale Laboratory Investigation of Longshore Sediment
Transport work unit from FY94 through FY98.  Mr. Ebersole was the Principal
Investigator of this work unit from FY99 through FY00.  Mr. Ernest R. Smith,
Research Hydraulic Engineer, CPB, is presently the Principal Investigator for the
work unit, and he is the lead engineer on the movable-bed investigations.
Dr. Ping Wang, Louisiana State University, is a research partner under contract
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Technician, ITL, are acknowledged for their valuable assistance during execution
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Director.

The contents of this report are not to be used for advertising, publication, or
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Chapter 1     Introduction 1

1 Introduction

In performing its mission to maintain navigable waterways along U.S. coasts,
the U.S. Army Corps of Engineers (USACE) regularly applies analytical and
numerical models to estimate the total longshore sediment transport (LST) rate.
Accurate prediction of LST rate is essential when predicting beach response in
the vicinity of coastal structures, designing beach nourishment projects, and
estimating sedimentation rates in navigation channels.  For design applications
with adequate field measurements, the commonly used CERC formula (Shore
Protection Manual 1984) can be calibrated and applied to estimate total LST rates
with reasonable confidence (+/- 50 percent error).  However, for design
applications without calibration data, the CERC formula provides only order-of-
magnitude accuracy.  Very little information and guidance are available for
defining the cross-shore distribution of LST.

To address deficiencies in existing methods for calculating LST, the Large-
scale Sediment Transport Facility (LSTF) has been constructed at the U.S. Army
Engineer Research and Development Center�s (ERDC) Coastal and Hydraulics
Laboratory (CHL).  The intent for the facility is to reproduce certain surf zone
processes found on a long, straight, natural beach in a finite-length wave basin.
Ongoing work in the LSTF is part of a research program to improve USACE�s
capability to predict local and total LST rates and to evaluate errors associated
with these predictions.  The LSTF simulates nearshore hydrodynamic and
sediment transport processes at a relatively large geometric scale, including
situations where considerable sand is mobilized and transported in suspension.

Chapter 2 provides an overview of the LSTF, including a brief description of
its major components.  Chapters 3 and 4 provide much more detailed information
about the design of both the longshore current recirculation and sediment
trapping and handling systems.  Chapter 5 discusses the procedures for molding
beach morphology to the prescribed profile shape.  Chapter 6 describes the
automated system for controlling experiments and the data acquisition and
analysis package that is used to process measured data.  Chapter 7 describes
operational procedures used for controlling the wave generators and pumps that
force the longshore current distribution.  Chapter 8 describes the calibration,
measurement, and analysis of various types of data that are acquired during
experiments: wave, current, sediment concentration, beach topography, and
quantities of sand that accumulate in traps located at the downdrift boundary of
the facility.  Chapter 9 describes the critical iterative process for establishing the
proper longshore current and summarizes results from regular and irregular wave
longshore current experiments performed on a planar concrete beach.  The
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success of this procedure is evaluated.  Chapter 10 describes two initial movable-
bed experiments, which were designed to learn how to effectively conduct
movable-bed experiments in the LSTF.  The experiments also were designed and
executed to address several research objectives, namely identifying the role of
breaker type and beach morphology on LST processes.  Differences in LST
processes for spilling- and plunging-breakers were examined and results from the
experiments are presented.  Conclusions are made in Chapter 11, and the success
of performing LST experiments in the LSTF is evaluated. Hydrodynamic data
from fixed-bed experiments are presented in Appendix A, and photographs of the
LSTF are given in Appendix B.
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2 Overview of the Laboratory
Facility

General Layout
The Large-scale Sediment Transport Facility (LSTF) has dimensions of 30 m

cross-shore by 50 m longshore by 1.4 m deep, as shown in Figure 1.  A
moveable-bed beach made of quartz sand, constructed on top of a concrete fixed-
bed beach, is located in the central region of the facility.  Four synchronized
wave generators are located offshore to generate unidirectional, long-crested
waves.  A rubble mound wave absorber is located behind the wave generators to
minimize wave reflections.  Longshore current and sediment are transported
toward the 20 flow channels at the downstream end of the facility (left side of
figure).  Each of the 20 flow channels at the downdrift end contains a low profile,
gravity-feed sediment trap to measure the rate of longshore sediment transport.
The longshore current is externally recirculated from the downdrift end of the
facility through 20 independent pump-and-piping systems, back to the upstream
end of the facility (right side of figure).  The flow is guided from the discharge
locations to the updrift end of the beach by 20 flow channels at the upstream end
of the facility.  The longshore current recirculation system is essentially a closed-
loop system that continuously recirculates longshore current from the
downstream to the upstream lateral boundary of the beach while waves are being
generated.

This chapter provides a brief overview of the various components of the
facility.  The external longshore current recirculation system and the sediment
trapping and handling system will be discussed in subsequent chapters because of
the complexity and large number of components in these two systems.  Figure 2
is a photograph of the LSTF taken during a recent moveable-bed sediment
transport experiment.  The offshore wave conditions during this experiment are
Hs = 0.30 m and Tp = 3.0 sec with a 10-deg angle of wave incidence.
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Figure 1. Plan view of the LSTF

Figure 2. View of the LSTF during sediment transport experiment

Concrete fixed bed

The concrete beach has a longshore dimension of 31 m and a cross-shore
dimension of 21 m. The main section of the concrete beach has a constant slope
of 1:30 and the toe of the beach slopes down to the basin floor at a 1:18 slope
(Figure 3).  Equations describing the shape of the fixed-bed beach are provided in
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Appendix A.  The fixed-bed beach was constructed by accurately installing
bottom elevation templates that are fixed to the floor of the wave basin.  The
space between the templates was filled with general-purpose sand and
compacted, and then capped with a concrete veneer approximately 0.1 m thick.
The surface of the concrete was broom finished to simulate the natural roughness
of sand.  Figure B-1, Appendix B, shows the concrete beach from the
downstream end of the facility.  Small longshore variations in beach elevation
can have a significant influence on longshore current patterns (Putrevu, Oltman-
Shay, and Svendsen 1995).  Therefore, the beach was designed and carefully
constructed with straight and parallel depth contours and a high degree of
accuracy (estimated vertical variation of +2 mm).

Figure 3. Grain size distribution of sand used in initial experiments

Sand moveable bed

One of the purposes of the LSTF is to quantify the effect of sediment size on
longshore sediment transport.  The facility was designed so that the moveable-
bed beach could be constructed with various sand sizes.  The first phase of
sediment transport experiments is being conducted on a moveable-bed beach
consisting of approximately 125 m3 of very well-sorted quartz sand having a
median grain size, D50 = 0.15 mm (Figure 3).  This is considered fine-grained
sand according to the Wentworth classification system.  An additional 25 m3 of
sand is stored outside of the facility for future use.

At the beginning of the sediment transport experiments, the beach profile
was graded to have the initial profile shape shown in Figure 4.  This initial shape
was determined based on results obtained from preliminary moveable-bed
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experiments and an analysis of the equilibrium beach profile for this grain size
(Dean 1977).  The height of the berm was selected so that the maximum
excursion of wave runup in the swash zone would not reach the upper elevation
of the berm.  The front slope of the berm (approximately 1:5.5) was chosen based
on the results of preliminary moveable-bed experiments.  The main section of the
beach was graded to have a constant slope of approximately 1:27, extending from
the initial still-water shoreline, offshore to 16 m from the onshore boundary.  The
toe of the moveable-bed beach slopes down to the concrete beach on a 1:8 slope
and has proven to be stable for the wave conditions tested.  The objectives in
designing this initial beach profile were to minimize the time required for the
beach profile to approach equilibrium, and to simplify the shape of the profile so
that the beach could be regraded to this initial shape on a regular basis.  The
calculated equilibrium beach profile for this sediment size also is shown in
Figure 4.  The process of initially grading the beach to have straight and parallel
contours and the procedure used to adjust the updrift and downdrift boundaries of
the beach is discussed in Chapter 5.

Figure 4. Profile view of LSTF showing the concrete and sand beach profiles

Coordinate system

The coordinate system used in the facility is right-handed, with the origin at
the downstream, shoreward end of the wave basin.  The positive x-axis is
directed offshore and is measured relative to the upper edge of the concrete beach
slope.  The positive y-axis is directed upstream.  The z-axis is measured
positively upward with the origin at the still-water level.  The coordinate system
was chosen based on future plans to extend the length of the facility.  However,
for simplicity, all downstream-directed longshore current speeds and flow rates
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presented in this report are given as positive numbers, even though the flow is in
the negative y-direction.

Wave Generators
Regular and irregular waves are generated using four repositionable, piston-

type wave generators.  The waves are accurately generated using a digitally
controlled servo electric drive system to control the position of the wave boards.
Each wave generator has a 7.62-m-long wave board, so all four systems generate
a total wave front of 30.5 m in length.  The wave generators are synchronized to
create unidirectional long-crested waves.  Figure 5 is a photograph of the wave
generators during a performance test to determine the maximum wave height that
can be generated at various wave periods.  The wave generators can be oriented at
various angles ranging from 0 to 20 deg with respect to shore-normal.  In Figure 4,
the wave generators are positioned at 10 deg to shore-normal.  For oblique angles
of wave attack, the wave generators are phase-shifted to maximize the cross-
shore dimension of the testing region.  End baffles, located between each
adjacent wave board, are used to guide the waves and prevent the formation of
spurious waves caused from wave diffraction from the ends of each wave board
and from wave energy reflected from the wave absorber located behind the wave
generators.

Figure 5. Synchronized wave generators creating long-crested waves

A performance curve for the wave generators is given in Figure 6 for a water
depth of 0.9 m at the wave generators.  There are six curves in this figure.  The
cresting-limit curve is based on linear wave theory for H/Lo = 0.142, where H is
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the wave height at the generator and Lo is the deep-water wave length.  The
stroke limit, velocity limit, and torque limit curves are based on the maximum
performance of the wave generators for a single regular wave.  However,
assuming that regular waves are generated for many minutes or hours of
operation, as would normally be the case, the continuous operation curve is the
maximum performance of the wave generators.  The system limit curve is the
lower limit of all of the curves, and represents the maximum regular wave height
that can be continuously generated.  In contrast, when generating irregular waves,
the maximum wave height in the irregular wave train is not limited by the
continuous operation curve.  Therefore, the maximum irregular wave height
increases significantly for peak wave periods ranging from T = 2.0 to 3.5 sec.

Figure 6. Performance of wave generators for a water depth of 0.9 m

Instrumentation Bridge
A semiautomated instrumentation bridge is used to traverse the length of the

testing region to allow detailed measurement of waves, currents, sediment
concentration, and beach profile evolution.  The bridge provides a rigid platform
for mounting wave gauges, current meters, fiber-optic backscatter sensors, and a
fully automated bathymetric survey system.  Figure 7 is an oblique view of the
downstream side of the bridge, looking in the offshore direction, during a
moveable-bed experiment.  For a typical experiment, wave gauges and acoustic
doppler velocitimeters are co-located to provide wave and current data at the
same cross-shore location.  The wave gauges and current meters are separated by
approximately 40 cm, in the longshore direction, to avoid hydraulic and electrical
interference between the two different types of instruments.  The bridge also
functions as an observation platform and provides access for personnel to
manually adjust the cross-shore and vertical position of the instruments.
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Figure 7. View of co-located sensors on instrumentation bridge

The bridge spans 21 m in the cross-shore direction and can traverse the entire
length of the wave basin.  Each end of the bridge is independently driven along
support rails by a digitally controlled servo-electric drive motor.  The bridge has
sufficient strength to support up to 3,000 kg of personnel and equipment evenly
distributed in the cross-shore direction.

For experiments conducted with high-water levels, the underside of the bridge
is located at the nominal elevation of the top of the exterior walls of the wave basin.
However, when the water level is lowered significantly, waves impact the
instruments at a lower elevation resulting in increased deflections and vibrations of
the instruments.  To mitigate this potential problem, the bridge was designed to
function at two different elevations.  For experiments conducted with low-water
levels the bridge can be lowered by 0.30 m by removing spacers located at each end
of the bridge.  Lowering the bridge should decrease deflections and vibrations of the
sensors because the relative height of the bridge above the water level is reduced.

Wave gauges

Water surface elevation time series are simultaneously measured using 14
single-wire capacitance wave gauges.  Ten of the wave gauges are mounted along
the length of the instrumentation bridge to measure wave transformation (shoaling,
refraction, wave breaking, and decay) from the offshore zone, across the surf zone,
and into the swash zone.  These wave gauges can be seen in the foreground of
Figure 7.  The wave gauges can be readily repositioned at any location along the
length of the bridge for various test configurations.  The gauges are numbered in
ascending order, starting with Wave Gauge No. 1 near the shoreline, and moving
offshore to Wave Gauge No. 10.  The remaining four wave gauges are fixed in an
array along the X = 18-m contour line.  One wave gauge is centered in front of
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each wave generator to measure the characteristics of the offshore waves.  All 14
wave gauges are attached to linear actuators and can be simultaneously
calibrated, as described in Chapter 8.

Acoustic-doppler velocitimeters

Orbital wave velocities and unidirectional longshore currents are measured
using 10 acoustic-doppler velocitimeters (ADV).  The ADVs are co-located with
the wave gauges in a cross-shore array along the length of the instrumentation
bridge.  Each ADV is mounted to a 1.8-m-tall vertical strut, which is mounted to
the downstream side of the bridge.  This allows the elevation of the ADV to be
easily adjusted to locate the sampling volume at the required elevation in the water
column (Figure 7).  Each sensor has a 1.0-m-long stainless steel stem with a
permanently engraved scale consisting of 0.1-m major increments and 0.01-m
minor increments.  Therefore, the sampling volume can be accurately positioned in
the water column by using the still-water level as a reference datum.  Hence, the
vertical structure of the mean longshore current can be accurately measured.
However, for most experiments, the ADVs are positioned so that the sampling
volumes are located approximately one-third of the water depth above the bed to
measure a representation of the depth-average velocity.

ADVs 3 through 10 are standard three-dimensional (3-D) down-looking
sensors, which are ideal for measurements in water depths greater than 10 cm.  The
down-looking sensor minimizes flow impedance when horizontal velocities are
dominant.  However, this probe orientation cannot be used to measure the velocity
in the upper 5 cm of the water column.  Therefore, ADVs 1 and 2 are two-
dimensional (2-D) side-looking sensors for measurement in shallow water close to
the shoreline.  The sampling volume is located 5.0 cm from the acoustic transmitter
on all 10 systems.

Fiber-optic Backscatter Sensors

Four vertical arrays of Fiber-optic Backscatter Sensors (FOBS) are located
along the length of the instrumentation bridge.  Each array is co-located about
midway between the wave gauges and the ADVs as shown in Figure 7.  The
FOBS simultaneously measure suspended sediment concentration at 19
elevations in the water column.  Each of the 19 measurement locations consists
of an optical fiber to transmit modulated white light into the water column and a
second optical fiber to receive and transmitted light backscattered from the sand
grains to a detector.  Each of the four sets of sensors consists of a lower and an
upper array.  The lower array consists of eight emitter/receiver pairs bundled
together in a circular, pipe-organ fashion with a 1.0-cm vertical spacing.  The
upper array has 11 emitter/receiver pairs with a nearly logarithmic vertical
spacing.

Bathymetric survey system

The moveable bed needs to be surveyed on a regular basis to quantify spatial
and temporal beach profile evolution.  Beach profiles are measured every 0.5 m
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along the beach to quantify the alongshore uniformity of the moveable bed.  A
fully automated 3-D bathymetric survey system was developed to minimize the
time and effort required to conduct a bathymetric survey.  In addition, the system
needed to be amphibious so that changes to the bathymetry above the still-water
level could be accurately measured.

The system consists of two primary components.  First, the vertical elevation
of the sand bed is measured using a commercially available beach profile
indicator consisting of a mechanical spring-wheel system which tracks the
elevation of the bed as the sensor moves along the length of the bridge.  Figure 8
shows the profile indicator in a stationary position on the sand bed when the
facility is drained.  The spring-wheel assembly is located at the bottom end of the
1.52-m-long vertical rod.  As the wheel rolls along the surface of the sand bed at
a constant horizontal speed of 0.1 m/sec, a servomotor maintains a continuous
downward force on the bed equivalent to a mass of 40 g.  An analog output
voltage is provided by a potentiometer circuit, which is coupled with the sensor.
This gives a vertical resolution of approximately +1 mm.  The sensor has
sufficient sensitivity and frequency response to measure the sand ripples,
although in some instances the wheel slightly rounds off the crest of the ripples.

Figure 8. Beach profile indicator resting on sand beach with facility drained

The second component is a high-resolution x-y positioning system.  A servo-
controlled support platform moves the beach profile indicator along a linear
bearing (cross-shore position) which is mounted to the updrift side of the bridge.
The alongshore location of the beach profiler is controlled with the drive motors
on each end of the bridge which traverse along the support rails on rigid urethane
tired wheels.  The position of both the x- and y-axis are controlled using
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servo-electric drive motors and magnetic linear encoders.  Integrating these two
systems with the multichannel, closed-loop, digital control system results in a
fully automated 3-D bathymetric survey system.

Lateral Boundaries
Design of the upstream and downstream lateral boundaries was a challenge,

since the longshore current has to flow out of the upstream flow channels and
into the downstream flow channels while wave diffraction into the flow channels
needs to be minimized.  Wave guides were designed to allow current to flow
under the impermeable wave guide, and the height of the opening beneath each
wave guide could be adjusted.  The height of the opening beneath the wave
guides was selected after several trial and error iterations.  At the upstream
boundary, a constant 0.15-m-high opening beneath the wave guide was used.  At
the downstream boundary, the bottom edge of the wave guide was set at
approximately the minimum wave trough elevation.  Therefore, at the
downstream boundary, the height of the opening beneath the wave guide
increased with increasing water depth.  In Appendix B, Figures B-9 and B-10
show the downstream and upstream wave guides, respectively, with the facility
drained.  Wave guides were not used at the ends of the four most shoreward flow
channels, because of the shallow-water depth and a desire to minimize
obstructions to longshore sediment transport in shallow water.

In addition to the wave guides, a matrix of 0.1-m-diam rigid polyvinyl
chloride pipe was installed in the flow channels at the downstream and upstream
ends of the facility.  At the downstream end of the facility, the matrix of pipe was
installed immediately upstream of the vertical turbine pumps to absorb the
residual wave energy that entered beneath the wave guides and to minimize wave
reflection in the flow channels (Appendix B, Figure B-11).  At the upstream end
of the facility, the matrix of pipe was installed immediately behind the wave
guide to direct the discharge from the pumps to the upstream boundary of the
beach (Appendix B, Figure B-10).  At both ends of the facility, the matrices of
pipes extended through the entire water column and across the full width of each
channel.  Svendsen (1991) discussed similar concepts.

Control and Data Acquisition Room
Real-time control and data acquisition of the many different types of

equipment and instrumentation in the LSTF are conducted from the control room,
located at the downdrift end of the facility (Figure 9).  Real-time control of the
wave generators and instrumentation bridge as well as data collection from the
wave gauges, current meters, and the beach profile indicator are carried out using
the computer located in the lower left corner of this photograph.  The computer
to the right is dedicated to data acquisition and real-time display of the in-line
flow sensors, which measure the discharge of the pumps.  The 20 flow channels
and vertical turbine pumps for externally recirculating the longshore current can
be seen in the foreground, through the window of the control room.  The
instrumentation bridge and the testing region of the facility can be seen in the
upper left corner of the photograph.
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Figure 9. View of the LSTF from inside the data acquisition and control room

The LSTF is designed and constructed using state-of-the-art equipment and
instrumentation.  These tools provide the user with the capability to conduct
accurately controlled moveable-bed laboratory experiments at a large geometric
scale.  Experience has shown that two operators can operate all of the equipment,
instrumentation and data acquisition, and control systems simultaneously.
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3 Longshore Current
Recirculation System

Introduction
This chapter describes the development of a large-scale longshore current

(LSC) recirculation system for the LSTF.  An LSC recirculation system is
essentially a closed-loop system that continuously recirculates longshore current
from the downdrift to the updrift lateral boundary of the beach while waves are
being generated.  The objective of this system is to accurately control and
recirculate the wave-driven longshore current through the lateral boundaries of
the facility, and therefore maximize the length of beach over which longshore
uniformity of waves and wave-driven longshore currents exist in the facility.
The majority of the material discussed in this chapter was published previously
by Hamilton et al. (1996 and 1997).

Conceptual Design
During the past 5 decades, seven types of longshore current recirculation

systems have been used to conduct laboratory investigations of longshore
currents (Figure 10).  The earliest systems were fairly simplistic, whereas the
most recent systems are more complex and are, in general, physically larger
which makes them substantially more expensive to design and construct.  Each of
these seven types of systems will be discussed briefly in this section.  Visser
(1991) and Svendsen (1991) also provide a description of several of these
systems.

Type 1: Putnam, Munk, and Trayler (1949) used a completely enclosed wave
basin and allowed the longshore current to recirculate in the offshore section of
the wave basin.

Type 2: Galvin and Eagleson (1965) and Mizuguchi and Horikawa (1978)
terminated the downstream wave guide at about the location of wave breaking,
allowing the longshore flux to exit the testing region.  The longshore current
recirculated outside of the downdrift wave guide and reentered the testing region
beneath the wave generators.
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Figure 10. Seven types of longshore current recirculation systems. Illustration of
Types 1 through 5 reproduced from Figure 1 (Visser 1991) (Dashed
arrows denote wave direction, and solid arrows denote mean current
direction)

Type 3: Brebner and Kamphuis (1963) terminated both the upstream and
downstream wave guides near the breaker point.  The recirculation is driven by a
water level difference between the upstream and downstream ends of the facility.

Type 4: Kamphuis (1977) used a procedure almost identical to Type 3,
except that the wave generators were raised slightly above the basin floor and
allowed the longshore current to also reenter the testing region beneath the wave
generators.

Type 5: Dalrymple and Dean (1972) used a circular wave basin with spiral
wave generator and a circumferential beach.  This is a unique method of avoiding
the traditional boundary effects resulting from the upstream and downstream
lateral boundaries of a wave basin.
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Type 6: Visser (1982 and 1991) was the first to use an active recirculation
system driven by a pump. As with the Brebner and Kamphuis (1963)
experiments, the wave guides were open at both ends of the beach.  However, in
this case, 12 independent weirs are used to input the required cross-shore
distribution of longshore current at the updrift boundary.

Type 7: H. R.Wallingford (1994) and Simons et al. (1995) provide a
description of the Coastal Research Facility at H.R.Wallingford, United
Kingdom.  This facility is a further improvement of Type 6 in that adjustable
weirs are used at both ends of the facility.  Therefore, the cross-shore distribution
of longshore current can be controlled at both lateral boundaries.

Based on an investigation of the various techniques used to recirculate the
longshore current in a wave basin with a finite length, a Type 7 recirculation
system was developed for the LSTF.  A Type 7 recirculation system should
maximize the length of surf zone in which the hydrodynamics are essentially
uniform in the alongshore direction.  Furthermore, the large geometric scale of
the wave conditions that can be generated in the LSTF will produce a significant
amount of suspended sediment transport.  It is therefore necessary to maintain
relatively straight and parallel current streamlines at the downstream boundary,
so that the cross-shore distribution of the total longshore sediment transport rate,
(measured using sand traps at the downstream boundary) is not skewed.  For this
reason, the recirculation system in the LSTF was developed with the capability of
controlling the cross-shore distribution of longshore current at both the upstream
and downstream lateral boundaries.

System Requirements
Five primary requirements were identified for the longshore current

recirculation system:

a. Must have a pumping capacity to recirculate the longshore flux
associated with a wide range of wave, water level, and bathymetric
conditions.

b. Must have the flexibility to recirculate relatively low longshore current
magnitudes associated with, for example, the offshore tail of the
longshore current distribution.  Therefore, the system should have the
capability to recirculate between 10 and 100 percent of the maximum
design pumping capacity at each cross-shore location.

c. Should be capable of maintaining constant discharge rates for several
hours of continuous operation to accommodate the time scales associated
with conducting moveable-bed experiments at this relatively large
geometric scale.

d. Should require minimal time and labor to adjust the magnitude and
cross-shore distribution of the longshore current being recirculated.  This
is of paramount importance for moveable-bed experiments because the
cross-shore distribution of recirculated longshore current must be
adjusted in response to the changing beach profile.
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e. Should have a design life of 15 to 20 years given the long-term
requirements of the facility.

Numerical Simulation of Longshore Current
The first part of this section provides a brief description and configuration of

the numerical model used to estimate, prior to construction, the magnitude and
cross-shore distribution of the longshore current that would be generated in the
LSTF.  The next section validates the results obtained from the numerical model
using dye measurements in the LSTF.  The final section shows the influence of
wave height, period, and direction on the estimated magnitude and cross-shore
distribution of the longshore current that would need to be recirculated.

Description of the numerical model

Kraus and Larson�s (1991) numerical model NMLONG (Numerical Model
of the LONGshore current) was used to estimate the wave-driven longshore
current in the LSTF, prior to design and construction.  NMLONG is a PC-based
model that calculates cross-shore distribution pattern of wave transformation,
mean water surface elevation, and longshore current.  The major assumptions in
NMLONG are longshore homogeneity and linear wave theory.

Using the data from Visser (1982), Kraus and Larson (1991) illustrated that
NMLONG can be calibrated to reproduce the LSC measured in the laboratory
with reasonable success.  In particular, the magnitude and cross-shore location of
the peak of the LSC distribution was reproduced with reasonable accuracy.  This
suggests that NMLONG can be used to provide a reasonable estimate of the
magnitude and cross-shore distribution of LSC that can be generated in the
LSTF.  However, in the Visser cases, NMLONG predicted that the magnitude of
the offshore tail of the LSC distribution was higher than measured by Visser,
even after the numerical model had been calibrated.

NMLONG requires the following input parameters: offshore wave height,
period, and direction, specification of regular or random waves, offshore water
depth, and beach profile elevation relative to mean water level.  Random waves
are characterized in NMLONG using the root-mean-square wave height, Hrms.
Values of Hrms were converted to significant wave height, Hs assuming Hs =
1.414 × Hrms.  Nonlinear bottom friction with a friction coefficient equal to 0.01
was used in the LSTF simulations.  For one wave condition, the sensitivity of
results to this value was evaluated by reducing and increasing the coefficient to
0.005 and 0.02, respectively.  All other empirical parameters were set to the
default values: incipient breaking-wave-height-to-water-depth ratio equal to 0.8,
stable wave-height-to-water-depth ratio equal to 0.4, energy flux dissipation rate
equal to 0.15, and lateral mixing coefficient equal to 0.3.

NMLONG was used to calculate the depth-averaged LSC velocities at each
cell spaced 1.0 m across the beach profile.  These depth-averaged velocities were
multiplied by the corresponding mean water depth and integrated across the
entire profile to estimate the total longshore volume flux for each wave
condition.
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Two series of numerical simulations were conducted to represent two
different experimental configurations planned for the LSTF.  The first series was
conducted with an offshore water depth equal to 0.6 m and represented the
configuration that would be used in the LSTF during the fixed-bed hydrodynamic
testing phase.  The second series was conducted with a water depth equal to
0.9 m and represented the configuration to be used for the moveable-bed
sediment transport experiments.  In the later configuration, it was assumed that a
0.3-m-thick uniform layer of sand would be placed on top of the existing
concrete beach.  Increasing the water level from 0.6 to 0.9 m translates the
shoreline directly upward (i.e., there is no cross-shore translation of the nearshore
zone).  However, the resulting magnitude and cross-shore distribution of the LSC
was slightly different for the two different configurations because of the slight
difference in wave transformation caused by the steeper toe of the beach in the
case with the moveable bed.

Numerical simulations in both test series covered the following range of
hydrodynamic conditions: significant wave height, Hs = 0.1 to 0.4 m, peak wave
period, Tp = 1.0 to 2.5 sec, and angle of wave incidence, θ = 5 to 20 deg relative
to shore normal.  For these test conditions, the total longshore volume flux
ranged from 0.04 m3/sec for Hs = 0.1 m, Tp = 2.5 sec, and θ = 20 deg to 1.3
m3/sec for Hs = 0.4 m, Tp = 2.5 sec, and θ = 20 deg.

The sensitivity of the bottom friction coefficient was evaluated for a
relatively energetic wave condition; namely Hs = 0.3 m, Tp = 2.5 sec, and θ = 20
deg.  The bottom friction coefficient was varied over a range of two times the
default value of 0.01 (i.e., from 0.005 to 0.02).  Results obtained using the lower
friction coefficient (0.005) resulted in a total longshore volume flux of 1.1 and
1.2 m3/sec for the 0.6 and 0.9 m water-depth cases, respectively.  The higher
friction coefficient (0.02) reduced the total longshore volume flux to 0.4 m3/sec
for both water-depth cases.  Therefore, the results obtained using NMLONG to
predict the total longshore volume flux in the LSTF are sensitive to the value of
the bottom friction coefficient.

Validation using dye measurements

Preliminary measurements of the magnitude of the longshore current
generated in the LSTF were obtained by injecting dye into the surf zone while
generating monochromatic waves.  These measurements then were used to assess
the validity of the numerical simulations.  However, the following facility
components had not been installed in the LSTF at the time these measurements
were required:

a. Lateral wave guides were not available to direct the incident waves from
the wave generators to the surf zone.

b. None of the longshore current recirculation system components (i.e.,
pumps and flow channels) were available to minimize the laboratory
effects caused by the lateral boundaries of the facility.
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c. Only monochromatic waves could be generated with the wave
generators, because the software for synchronizing the wave generators
for irregular waves was still in development.

As a result, strong adverse reflection patterns (from the vertical walls at the
two ends of the basin) and circulation cells developed throughout the facility
during the first 5 to 10 generated waves.  In addition, no flow velocity
measurement sensors were available to accurately measure the wave-driven
longshore current in the surf zone.

Three conclusions were made based on the limited dye measurements.  First,
NMLONG produced reasonable estimates of the peak longshore current
magnitude and cross-shore location, using the default bottom friction coefficient
of 0.01.  However, insufficient data were collected to calibrate this coefficient.
Secondly, we were unable to verify the cross-shore distribution of the longshore
current predicted using NMLONG because of the physical limitations and
resulting adverse laboratory effects previously discussed.  Therefore, the default
lateral mixing coefficient (0.30) was used.  Thirdly, observations made during the
dye experiment strongly reinforced the expectation that a properly designed
external longshore current recirculation system would be required to maintain
longshore uniformity of waves and wave-driven currents in the facility,
especially for energetic wave conditions.

Influence of wave height

Figure 11 shows the calculated LSC distribution for Hs = 0.2, 0.3, and 0.4 m,
with Tp = 2.5 sec and θ = 20 deg at the wave generator.  Three general trends can
be seen in this figure.  First, as Hs increases, the magnitude of the LSC at the
peak of the distribution significantly increases.  The magnitude of the peak LSC
equals 0.21, 0.28 and 0.36 m/sec for Hs = 0.2, 0.3 and 0.4 m, respectively.  This
is a relative increase of approximately 30 percent for each 0.1-m increase in wave
height in these cases.  Secondly, the peak of the LSC distribution moves offshore
as Hs increases, because incident waves begin to break farther offshore.  Thirdly,
the width of the LSC distribution increases as Hs increases, because the width of
the surf zone increases.

Influence of wave period

Figure 12 shows the LSC distribution for Tp = 1.0, 1.5, 2.0, and 2.5 sec with
Hs = 0.3 m and θ = 20 deg at the wave generator.  Three general trends can be
seen in this figure.  First, as Tp increases, the magnitude of the LSC at the peak of
the distribution increases slightly.  The magnitude of the peak LSC equals 0.25,
0.26, 0.27, and 0.28 m/sec for Tp = 1.0, 1.5, 2.0, and 2.5 sec, respectively.  This is
a relative increase of only 4 percent for each 0.5-sec increase in Tp for these
cases.  Secondly, the peak of the LSC distribution moves slightly farther offshore
as Tp increases, because incipient breaking occurs slightly farther offshore.
Thirdly, the width of the LSC distribution increases slightly as Tp increases,
because the width of the surf-zone increases slightly.
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Figure 11. Influence of wave height on required longshore current distribution

Figure 12. Influence of wave period on required longshore current distribution
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Influence of incident wave direction

Figure 13 shows the LSC distribution for θ = 5, 10, 15, and 20 deg with
Hs = 0.3 m and Tp = 2.5 sec.  Three general trends can be seen in this figure.
First, as θ increases, the magnitude of the LSC at the peak of the distribution
significantly increases.  The magnitude of the peak LSC equals 0.10, 0.18, 0.23,
and 0.28 m/sec for θ = 5, 10, 15, and 20 deg, respectively.  This is a relative
increase of about 80, 28, and 22 percent for each consecutive increase in θ.
Secondly, the cross-shore location of the peak of the LSC distribution remains
constant as θ increases.  Thirdly, the width of the LSC distribution remains
reasonably constant as θ increases.

Figure 13. Influence of wave direction on required longshore current distribution

Based on these numerical simulations, it was concluded that increasing Hs
strongly influences the magnitude and cross-shore location of the peak of the
LSC distribution, whereas, increasing Tp has a much milder effect.  In addition,
increasing θ has a very strong influence on increasing the peak magnitude but no
influence on the cross-shore location of the peak of the LSC distribution.

Design Parameters
The first part of this section describes the design wave condition used to

determine the required pumping capacity of the LSC recirculation system.
Subsequent sections apply a factor of safety to the numerical model results, and
incorporate the requirements of conducting experiments with a moveable-bed
beach and a variable operating water level into the design.
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Design wave condition

To determine the design capacity of a LSC recirculation system for the
LSTF, a maximum design wave condition was selected.  After observing the
location of the break point for a number of different wave height and period
combinations in the LSTF  (and comparing these results with the numerical
simulations), it was decided that Hs = 0.3 m and Tp = 2.5 sec is probably the most
energetic wave condition that will be generated during the moveable-bed LST
experiments.  As mentioned previously, the maximum angle-of-wave incidence
(measured at the wave generators) to be tested in the LSTF is 20 deg.  Therefore,
the �design wave condition� used to determine the maximum required pumping
capacity of the LSC recirculation system was characterized by Hs = 0.30 m,
Tp = 2.5 sec, and θ = 20 deg with an offshore water depth of 0.9 m.  This is the
LSC distribution shown previously in Figure 11 (middle curve) and Figures 12
and 13 (upper curve). Results obtained using NMLONG to predict the magnitude
and cross-shore distribution of LSC for this �design wave condition� indicated a
total longshore flux of 0.76 m3/sec within the surf zone.

Determining a factor of safety

A factor of safety was incorporated into the design to compensate for
inaccuracies in calculating the magnitude and cross-shore distribution of LSC
that will be generated in the LSTF.  Our concerns included: (a) having inadequate
data to calibrate the bottom friction coefficient and the lateral mixing coefficient
in the numerical model; and (b) changes in the bottom roughness between the
initial hydrodynamic tests on a fixed-bed concrete beach and multiple grain sizes
used for the moveable-bed beach for the LST experiments.  The surface of the
concrete beach was broom-finished to simulate the roughness of a course grained
sand.  However, because bed-forms would develop in the LST experiments, it
was assumed that the moveable-bed beach would have a higher friction
coefficient for a given wave condition.  Because of these uncertainties, the
magnitude of the LSC at each cross-shore location was increased by 10 percent
(i.e., a Factor of Safety = 1.1) for the purpose of determining the required
pumping capacity of the LSC recirculation system.

Allowance for maximum depth of erosion

At this point in the design process, predictions of the LSC magnitude and
cross-shore distribution to be generated in the LSTF were based on a 1:30 plane
sloping fixed-bed beach having parallel contours.  However, for future moveable-
bed experiments, the beach profile would adjust in response to the incident wave
conditions, creating a shore-parallel bar and trough feature near the location of
initial wave breaking. Assuming longshore uniformity in the beach bathymetry,
the capacity of the LSC recirculation system had to be increased wherever the
beach profile would erode, because of the increased longshore flux at that cross-
shore location.

To investigate this problem, 2-D flume tests were conducted to estimate the
maximum depth of erosion during moveable-bed LST experiments in the LSTF.
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An initial 1:30 plane-sloping beach was constructed using sand having D50 =
0.11 mm, which was the same initial beach slope and sediment size to be used for
the fine-grained moveable-bed test series in the LSTF.  In each experiment, the
maximum depth of erosion was located just offshore of the still-water shoreline.
For the design wave condition, the maximum depth of erosion did not exceed
0.1 m; however, this conclusion is based on 2-D flume tests, and not 3-D tests in
the LSTF.

For design purposes, it was assumed that the entire 18-m width of the
moveable-bed beach would erode by 0.1 m.  Although this was only a rough
assumption, it was conservative in that it allowed for the maximum depth of
erosion to occur at any location across the beach profile.  In particular, this was a
very conservative assumption near the offshore end of the beach where accretion
would occur (as opposed to erosion) as the offshore bar developed.  Nonetheless,
over designing the LSC recirculation system near the offshore region of the
beach would give the system more flexibility in the future when conducting
moveable-bed experiments with coastal structures.

Note that this analysis assumed that as the offshore bar and trough feature
developed in the moveable-bed experiments, the depth-averaged LSC at any
cross-shore location would not change substantially from the case with a plane
sloping fixed-bed beach.  Although this may not be the case, it was assumed that
as the beach profile developed changes to the depth-averaged LSC would be
relatively small, since the initial beach slope was relatively gentle (1:30) and the
total profile adjustment would be relatively small.  Therefore, this assumption
would be adequate for design purposes.

Allowance for variable water level

The design of the LSC recirculation system also accounted for the
requirement to conduct experiments with variable water levels in the facility.  As
mentioned previously, the plan was to conduct the majority of the moveable-bed
LST experiments with an offshore water depth of 0.9 m.  However, if the water
level is increased in the future, the LSC distribution would need to be translated
shoreward.

A number of physical constraints in the vertical dimension of the facility
dictated that the maximum operating water level could not exceed 1.0 m (at least
for energetic wave conditions).  Lower water levels could be used, however, the
wave generation capability of the wave makers would decrease with decreasing
water level.  Therefore, for design purposes, the critical design parameter was the
maximum operating water level.  The first curve in Figure 14 shows the
longshore flux distribution for the design wave condition, with an offshore water
depth of 0.9 m.  This curve includes the increased capacity required by using a
factor of safety of 1.1 and the assumption that the moveable bed eroded 0.1 m
across the entire width of the beach.  The abrupt change in cross-shore gradient at
X = 18 and 21 m was caused by the sudden change in beach slope at these
locations. The second curve was obtained by increasing the offshore water depth
to 1.0 m for the same design wave condition.  Essentially, this 0.1-m increase in
operating water level translates the LSC distribution 3.0 m shoreward, because
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the slope of the concrete beach is 1:30.  The third curve in the figure
encompasses both the first and second curves and represents the required
pumping capacity of the LSC recirculation system for water levels ranging from
0.9 to 1.0 m.  As shown in the figure, incorporating a variable water level into the
design essentially broadens the width of the LSC distribution that needs to be
recirculated within the facility.

Figure 14. Influence of water depth on required longshore current distribution

Design Pumping Capacity
The last step in this phase of the design process was to determine the design

capacity of each of the individual pumps that make up the LSC recirculation
system.  Required pump capacity is a function of the width of the flow channels
at the downdrift end of the facility, which is directly related to the cross-shore
resolution of the LSC recirculation system.  Intuitively, one would expect that the
higher the cross-shore resolution, the longer the �testing region� where longshore
uniformity of waves and wave-driven longshore currents exist.  After reviewing
the designs of LSC recirculation systems used in other laboratory facilities, it was
decided that the flow channels at both ends of the LSTF should be 0.75 m in
width.  This was a compromise between cross-shore resolution and the estimated
cost of construction.

Knowing the required pumping capacity of the LSC recirculation system,
shown as the upper limit in Figure 14, and given a flow channel width of 0.75 m,
the capacity of each individual pump could be readily calculated.  Figure 15
shows a bar graph expressed in litres/sec for every 0.75-m width of surf zone,
and the magnitude of each bar represents the required pumping capacity of each
individual pump.  To reduce the number of pumps near the shoreline, where the
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longshore flux was estimated to be relatively small, one larger pump was used in
place of four smaller pumps.  The required pump capacities (based on the
numerical simulations) and design pump capacities (as-built) are slightly
different because of the need to minimize cost by selecting pumps with capacities
which were commercially available.  In addition, it was prudent to have
additional pumping capacity at the offshore of the system or the result of
uncertainties in estimating the longshore current magnitude in that region.

Figure 15. Required and design pumping capacity of the longshore current
recirculation system

The total design capacity of the LSC recirculation system was calculated to
be approximately 1.25 m3/sec.  To put this pumping capacity into perspective
with other large-scale laboratory facilities, HR Wallingford (1994) states that the
LSC recirculation system in the Coastal Research Facility has a design capacity
of 1.2 m3/sec (i.e., four axial flow pumps each with a capacity of 0.3 m3/sec).
The LSC recirculation system in the Coastal Research Facility is used to generate
not only wave-driven LSC within the surf zone, but also tidal currents offshore of
the toe of the concrete beach.  Therefore, although the purpose of the two
recirculation systems is not exactly the same, the total design pumping capacities
are very similar.

Design of System Components
This section provides a detailed technical description of each of the five sub-

systems that make up each of the 20 independent recirculation systems.
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Vertical turbine pumps and motors

Vertical turbine pumps were chosen for this application based on a desire to
alleviate problems with priming and air entrainment. These problems are
completely eliminated since, by definition, the impeller on a vertical turbine
pump is located below the mean water level.

Figure 16 provides an oblique view of the 20 vertical turbine pumps, drive
motors, and discharge pipes immediately after the installation was complete.
Each vertical turbine pump consists of a single-stage impeller and bowl
assembly, a vertical column assembly, a discharge head, and an electric drive
motor.  Closed-type Francis-Vane impellers were used to eliminate the
requirement of having to adjust the clearance beneath the impellers to maintain
optimum hydraulic efficiency. The impellers are constructed of high-strength
silicon bronze and the suction bowls have vitra glass-lined waterways for
maximize abrasion resistance.  Minimizing long-term abrasion in the pumps was
an important design criterion, because it was anticipated that small quantities of
sand would pass through the systems during moveable-bed experiments.

Figure 16. Oblique view of 20 vertical turbine pumps and motors
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Table 1 lists the primary design specifications of each pump including:
discharge capacity at the best efficiency point; total dynamic discharge head;
discharge pipe diameter; impeller diameter, optimized to the best efficiency point
of each pump; hydraulic efficiency; specific speed; and the electric power
required to drive each pump at maximum discharge.  The specific speed of all
four models of pumps ranged from 2,880 to 4,340.  Hence, each of the pumps
can be classified as mixed-flow pumps, which generate discharge head through a
combination of centrifugal and axial forces.  The electric motors are inverter duty
motors manufactured using special inverter grade insulation so that the motors do
not overheat during low-speed operation.  Pump No. 1 is located at the onshore
end and Pump No. 20 is at the offshore end of the recirculation system.  For
additional information on the drive motors for the vertical turbine pumps, see
U.S. Motors (1996).

Table 1
Vertical Turbine Pump and Motor Specifications

Pump
Location
No.

Discharge
Capacity
ℓ/sec

Total
Dynamic
head
m

Discharge
Pipe
Diameter
mm

Optimum
Impeller
Diameter
mm

Hydraulic
Efficiency
1,800 RPM
%

Specific
Speed

Required
Power
kW

1-3 37.8   9.8 150 149 79 2,880   4.6

4, 5 50.5 12.2 150 176 81 2,580   7.4

6, 18-20 63.1   8.8 200 149 79 4,340   6.9

7-17 75.7 11.9 200 178 80 3,930 11.0

Variable speed motor controllers

To meet the design requirement that each pump-and-piping system should
have the capability to recirculate between 10 and 100 percent of the maximum
design discharge, variable speed motors were used to drive the pumps.  It was
concluded that throttling valves, weirs, or other mechanical control mechanisms
are too labor intensive to operate because there are 20 independent pump-and-
piping systems.  Variable speed motors were the most desirable solution for two
primary reasons: (a) there is a linear relationship between flow rate and pump
speed giving accurate control of discharge over a wide range of flow rates; and
(b) pump discharge rates could be remotely controlled and adjusted with a
minimal amount of time and effort.  As a result, 20 pulse-width-modulated,
variable-frequency, alternating-current motor controllers were used to control the
speed of the pumps.  Eleven of the motor controllers are 11.25-kW systems and
nine are 7.5-kW systems.  The output frequency of the motor controllers, and
hence the speed of the pumps, can be manually adjusted using a human interface
key pad, with digital display, mounted on the front panel of each controller
(Figure 17).  Electrical power is provided by a 400-ampere, 480-volt, 3-phase,
60-Hz, electrical service.
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Figure 17. Variable speed motor controller with digital human interface

Piping system

The piping system consists of fifteen 200-mm- and five 150-mm-diam
pipelines, with a total pipe length of approximately 1,500 m.  Selection of the
discharge pipe diameter was based primarily on economics.  The cost of various
pipe sizes was compared with the associated pump and motor size required to
overcome the resulting head loss through the piping system at maximum
discharge. All of the pipe, fittings, and valves are constructed of rigid polyvinyl
chloride.  The advantages of polyvinyl chloride are that it has good pressure-
bearing capability, exceptional long-term corrosion resistance, and smooth
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interior walls to minimize head loss.  Transparent polyvinyl chloride pipe was
used at the pump discharge heads and immediately upstream of the flow sensors
as observation windows to determine if air or sediment is being pumped through
the piping system. This may be monitored because the pumps are designed to
withstand only small quantities of sand passing though the system and because
the flow sensors, discussed in the next section, are somewhat sensitive to air and
sediment entrainment.

Flow measurement system

Midway along each pump-and-piping system, the main pipeline branches out
into two smaller pipelines (total of 40) running parallel for approximately 4.0 m
before converging back into the main pipelines. These smaller pipelines are the
in-line flow measurement sections and each contains a transparent section of
polyvinyl pipe used for monitoring of air and sediment entrainment, a true union
ball valve, which is either completely closed or completely open, and an
impeller-type flow sensor.  Systems No. 1, 2, and 3 have 38- and 75-mm-diam
flow measurement sections, whereas System No. 4 through 20 have 50- and
100-mm-diam flow measurement sections.  Figure B-7, Appendix B, shows one
of the parallel flow measurement systems prior to installation into the longshore
current recirculation system.  There are a total of 20 of these systems, one for
each pump-and-piping system.  For high-flow conditions in a given system, the
valve in the smaller pipe is closed and the flow rate is measured using the flow
sensor in the larger of the two parallel pipes.  In contrast, for low flow conditions,
the ball valve in the larger pipe is closed and the flow rate is measured using the
flow sensor in the smaller pipe. None of the valves are used to throttle the flow
rate; they are either completely closed or fully open.  The reasons for using two
parallel pipelines with individual flow sensors were two fold: (a) to increase the
water velocity at the flow sensor during low-flow conditions, to minimize
measurement error; and (b) to increase the range of discharge rates over which
the vertical turbine pumps will operate (Section entitled �Hydraulic
Characteristic Curves� in Chapter 3).

Each of the flow sensors has a six-blade impeller with a nonmagnetic sensing
mechanism.  Figure B-8, Appendix B, shows the components of a 50- and
100-mm-diam flow sensor prior to assembly.  The forward-swept design coupled
with the absence of magnetic drag provides improved accuracy and repeatability
at lower flow rates.  The manufacturer states the following specifications:
calibration range 0.3 m/sec to 9.1 m/sec; accuracy +1 percent of full scale;
repeatability +0.5 percent; and linearity +0.5 percent.  The frequency of the
output signal, a low impedance 8-volt d-c square wave, is proportional to the
magnitude of the flow rate through the pipe and is transformed into a digital
signal and transmitted to a personal computer using RS-485 protocol.  During
operation of the facility, the measured flow rate can be adjusted to match the
target flow rate by changing the speed of the vertical turbine pump.  For further
information on the flow sensors, see Data Industrial (1994).
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Flow channel and intake system

As shown previously in Figure 1, flow channels are used at the upstream end
of the facility to guide water from the discharge pipes to the upstream boundary
of the beach.  Likewise, on the downstream end of the facility, flow channels
guide the longshore current from the downstream boundary of the beach to the
vertical turbine pumps.  Each of the flow channels is 0.75 m wide.  The two
sidewalls of the channels consist of fabricated aluminum flow guides.  A
continuous neoprene gasket is used to seal the interface between the flow guides
and the reinforced concrete floor and sidewalls of the facility, so that each flow
channel is independent and water tight. To ensure maximum flexibility of the
facility, the recirculation system has been designed with the capability to conduct
experiments with water levels ranging from 0.5 to 1.0 m.  As a result, 20 sumps
were constructed to ensure vortex free operation of the vertical turbine pumps at
maximum discharge, and hence maximum drawdown, with a minimum operating
water level of 0.5 m.  Each sump is constructed of reinforced concrete and is 0.75
m wide, 1.5 m long, and 1.2 m deep (Figure B-6, Appendix B).  Hence, design of
the intake system to each pump consists of a straight open flow channel with a
sump at the downstream end of the channel.  Turns and obstructions in the intake
system were minimized to avoid the possibility of eddy currents causing
submerged vortices under high flow conditions.

Hydraulic Characteristic Curves
By the use of variable speed motors, the discharge of each pump can be

varied to suit the recirculation requirements for a given test condition.  Figure 18
shows the performance curve for Pump No. 10 operating at speeds of 540, 1,080,
1,440, and 1,800 rpm, which correspond to 30, 60, 80 and 100 percent of the
nominal operating speed of 1,800 rpm.  The manufacturer supplied the
performance curve for a pump speed of 1,800 rpm.  The performance curves
representing slower pump speeds were calculated using the standard homologous
pump equations.

Figure 18 also shows two characteristic curves for Pump No. 10 piping
system.  These two curves represent head loss through the 70-m-long, 200-mm-
diam main pipeline combined with the head loss through the 5-m-long flow
measurement section of 100- and 50-mm-diam (FS = Flow Sensor in legend of
figure). The intersections of the pump performance curves with the two
characteristic pipe curves define the range of operating conditions of the
combined pump-and-pipe system.  The following technique is used to meet the
design requirement of a pumping range between 10 and 100 percent of the
maximum discharge of each pump.  Point No. 1 in the figure, shows that the
maximum discharge through System No. 10 is approximately 75 ℓ/sec. The pump
speed then can be reduced to 30 percent (540 rpm) of the nominal pump speed of
1,800 rpm depicted by Point No. 2.  However, if the pump speed is reduced to
less than approximately 30 percent of the nominal speed, the pump discharge will
plummet to zero because of the inadequate centrifugal and axial forces at the
impeller.  Therefore, to obtain lower discharge rates, the valve in the larger pipe
is closed and the flow rate is measured using the flow sensor in the smaller pipe.
However, this increases the head loss in the piping system.  To overcome this
additional head loss, the pump speed is increased to approximately 1,680 rpm
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(Point No. 3) on the second characteristic pipe curve.  To obtain lower flow
conditions, the pump discharge can again be reduced until Point No. 4 is reached,
corresponding to 30 percent of the nominal speed.  At Point No. 4, the discharge
through the piping system is approximately 7.5 ℓ/sec, which is 10 percent of the
maximum discharge of 75 ℓ/sec, at Point No. 1.  The 20 pump-and-piping
systems were designed to have this same functional capability.

Figure 18. System No. 10: Pump performance and characteristic pipe curves

Calibration and Testing

Relationship between pump discharge and frequency

After the recirculation system was constructed, tests were conducted to
develop a relationship between pump discharge rates and frequency of the motor
controllers for each of the 20 pump-and-piping systems.  The discharge from
each system was measured using the factory calibration equations supplied with
each of the 40 in-line flow sensors.  Tests were conducted starting with low-flow
conditions by closing the valve in the larger pipeline and allowing the flow to
pass through the smaller pipeline.  Each system was evaluated for the full range
of frequencies of the motor controllers starting at 15 Hz and increasing up to 60
Hz in increments of 5 Hz, for a total of 10 data points per calibration curve.  Each
data point represents the average flow rate measured for 500-sec duration and
sampled at 20 Hz.  This series of 10 tests was repeated for the high-flow
conditions by closing the valve in the smaller pipeline and allowing the flow to
pass through the larger pipeline.
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Figure 19 shows the results for pump-and-piping System No. 10.  The lower
curve represents the relationship between pump discharge and frequency of the
motor controller when water is flowing past the flow meter in the smaller
pipeline (50-mm diam).  The upper curve represents the second series of tests
with water flowing past the flow meter in the larger pipeline (100-mm diam).
The two best-fit lines passing through the two sets of data represent the results
from regression analysis. The relationship between pump discharge and
frequency was very linear, as predicted by theory.  This was true for the 20
systems.  As listed previously in Table 1, several of the systems have identical
pumps, motors, and variable frequency motor controllers.  However, because the
length of each pipeline varies for each system, the discharge rates at a given
frequency for each of these systems are not identical.  Therefore, there is a
unique set of calibration curves for each of the 20 systems.

Figure 19. System No. 10: Relationship between pump discharge and frequency
of the motor controller

Using these calibration curves, the operator of the facility can readily
determine the frequency settings for each of the pumps, once the desired
discharge rate for each system has been determined.  Two years after conducting
these calibration tests, at the time of writing this report, experience has shown
that these calibration curves have an accuracy of within +2 to 3 percent.
Therefore, these calibration curves work very well as a first approximation of the
frequency settings of the motor controllers.  The facility operator then would
adjust the frequency settings to bring the measured discharge rates to within +1
percent of the desired values.  After the low-flow or the high-flow mechanisms
have been selected for each pump, the process of converging in on the correct
frequency for the motor controllers requires approximately 30 min.
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Pumping steadiness and measurement repeatability

As mentioned previously, another system requirement for the recirculation
system was the capability of maintaining constant discharge rates for several
hours of continuous operation.  This was needed to accommodate the time scales
associated with conducting sediment transport experiments.  To help meet this
requirement, all of the components procured for the recirculation system were of
high quality design and construction.  Nonetheless, maintaining constant
discharge rates for several hours of operation was still a concern.  Therefore, tests
were conducted to verify the steadiness of flow through each of the 20 systems
and to evaluate the repeatability of the in-line flow sensors.

Tests were conducted by operating all of the pumps for 8 hr of continuous
operation to represent the case where an experiment was run continuously all day
long; an extreme case.  The in-line flow sensors were sampled at 20 Hz and the
average flow rate was recorded every 30 sec in the 20 systems.  Therefore, each
data point in the recorded time series represented the average value of the
previous 600 (20 Hz × 30 sec) instantaneous values for each of the 20 systems.
For pump-and-piping System No. 10, the standard deviation was 0.40 ℓ/sec for
an average discharge rate of 70 ℓ/sec.  Therefore, the average discharge rate
remained within +2 percent of the desired flow rate of 70 ℓ/sec during 8 hr of
continuous operation.  The 20 pump-and-piping systems gave similar results.
Unfortunately, it was not possible to determine if this variation was caused by
actual oscillations in the pump discharge rate or by errors associated with
measuring the flow rate with the in-line flow sensors.  Nonetheless, this
magnitude of variation is relatively small, and it was concluded that the
recirculation system met the design requirements for the facility.

Summary
This chapter documents the design process used to develop the longshore

current recirculation system for the LSTF.  Prior to construction, a design wave
condition, of Hs = 0.3 m, Tp = 2.5 s, and θ = 20 deg, with an offshore water depth
of 0.9 m, was used to numerically estimate the magnitude and cross-shore
distribution of the longshore current that would be generated in the new facility.
It was concluded that 20 independent pump-and-piping systems would be
required to provide adequate cross-shore resolution to recirculate a broad range
of longshore current distributions within the facility.

The 20 independent pump-and-piping systems have a total discharge capacity
of 1,250 ℓ/sec.  Using a combination of variable speed vertical turbine pumps
along with a low- and high-flow measurement mechanism in each piping system,
the recirculation system has the capability to accurately recirculate between 10
and 100 percent of the maximum design capacity at the 20 cross-shore locations.
This unique design allows a wide range of longshore current magnitudes and
cross-shore distributions to be accurately controlled and recirculated for a wide
range of incident wave conditions, water levels, and bathymetric conditions.
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Calibration and verification of the longshore current recirculation system, as
well as 2 years of experience operating the system during fixed-bed and
moveable-bed experiments, has demonstrated that the recirculation system meets
the design requirements originally developed for the LSTF.
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4 Sediment Trapping and
Dredging Systems

Introduction
This chapter describes the design, testing, and verification of the sediment

trapping and dredging systems developed for the LSTF.  This system is used to
measure the magnitude and cross-shore distribution of sand transported along the
beach while waves and currents are generated.  This system is comprised of the
following components:

a. Twenty gravity-feed rectangular sediment traps and the associated
support frames.

b. Sixty individual load cells (three for each trap) to obtain real-time
measurements of the quantity of sand that accumulates in each trap.

c. A data acquisition system for data collection and real-time display of the
quantity of sand simultaneously measured in each trap.

d. A system for dredging sand from the traps and transporting it as a
hydraulic slurry through a closed conduit back to the updrift end of the
facility.

This chapter begins by describing the design of the major components of the
sediment trapping system.  The design and general operation of the dredging
system is then discussed.  The next section describes results obtained from a
series of static performance tests conducted with the facility drained and the traps
empty, to verify the operation of the 20 sediment traps.  The last section
discusses results from a set of dynamic performance tests conducted using
regular and irregular waves, to assess the structural integrity of the trap design as
well as the signal to noise ratio of the measurements.  The data acquisition
system used to measure the quantity of sand in each trap, along with the real-time
display system used to visualize the measured data, will be discussed in
Chapter 6.
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Design of Sediment Trapping System

Sediment traps

The sediment traps are located at the downdrift end of the facility, and are
positioned within the flow channels, as illustrated in Figure 20.  A sediment trap
is located in each flow channel starting with Channel No. 1 (the most shoreward
flow channel) and extending offshore to flow Channel No. 17.  Additionally, a
sediment trap is located in flow Channel No. 19.  The decision to eliminate traps
in flow Channels No. 18 and 20 was determined based on cost considerations and
the expected low rates of longshore sediment transport in the offshore region.
Based on the fall velocity of the sediment used to construct the moveable-bed
beach, and the magnitude of the longshore current in the flow channels, the
decision was made to maximize the length of these sediment traps.  Each trap is
approximately 6.0 m long and 0.6 m wide.  In addition, two shorter traps are
located landward of flow Channel No. 1 with the objective of quantifying the
longshore sediment transport rate near the still-water shoreline and in the uprush
zone.  Each �uprush-zone � trap is approximately 2.5 m long and 0.5 m wide.
These two traps were added to the design after qualitatively observing the
magnitude of longshore sediment transport in the swash zone as well as the
morphologic changes that occurred in this region during some preliminary
moveable-bed experiments.

Figure 20. Twenty sediment traps are located inside downdrift flow channels

The dimensions and capacity of each of the traps are tabulated in Table 2,
based on the as-built inside dimensions of each trap and assuming that the traps
can be completely filled with sand along the entire length of the trap (a very
extreme case).  The last column lists the capacity of each trap in terms of the
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maximum submerged weight of sand that each trap can hold.  In this report, the
term �submerged weight� will be used rather than �mass,� because this is the
quantity the traps measure.  These calculations assume that the specific gravity of
quartz sand is 2.65, and that the in situ bulk porosity of the sand in the trap is 0.4.
Therefore, the buoyant unit weight of the sand in the traps is 1,122-kg/m3.  As
shown in Figure 20, the height of the traps decreases in the offshore direction.
This is dictated by the fact that the elevation of the beach decreases in the
offshore direction.  One of the design criteria was to select the height of each trap
so that the brim elevation of the trap is slightly lower than the elevation of the
concrete beach.  Therefore, in an extreme event, if a portion of the moveable bed
eroded close to the elevation of the concrete, sediment could be transported into
the traps and not be obstructed.  This decision also makes it possible to remove
the entire sand beach in the future to conduct additional fixed-bed experiments
without the traps obstructing the longshore current.  In addition, to simplify
construction and assembly, the trap height decreases in sets of two or three traps.
Therefore, there are only 10 different sizes. This also allows mechanical
components on adjacent traps to be temporarily interchanged, if in need of repair.

Table 2
Dimensions and Capacities of the 20 Sediment Traps

Trap No.
X-Loc.
m

Inside
Height
m

Inside
Length
m

Inside
Width
m

Volumetric
Capacity
m3

Maximum
Submerged
Weight of
Sand
kg

 -2   1.875 0.55 2.44 0.50 0.67 749
 -1   2.625 0.55 2.44 0.50 0.67 749
  1   3.375 0.50 6.10 0.56 1.71 1917
  2   4.125 0.50 6.10 0.56 1.71 1917
  3   4.875 0.46 6.10 0.56 1.58 1772
  4   5.625 0.46 6.10 0.56 1.58 1772
  5   6.375 0.37 6.10 0.56 1.28 1432
  6   7.125 0.37 6.10 0.56 1.28 1432
  7   7.875 0.37 6.10 0.56 1.28 1432
  8   8.625 0.32 6.10 0.56 1.10 1238
  9   9.375 0.32 6.10 0.56 1.10 1238
10 10.125 0.32 6.10 0.56 1.10 1238
11 10.875 0.27 6.10 0.56 0.93 1044
12 11.625 0.27 6.10 0.56 0.93 1044
13 12.375 0.25 6.10 0.56 0.84 947
14 13.125 0.20 6.10 0.56 0.67 752
15 13.875 0.20 6.10 0.56 0.67 752
16 14.625 0.15 6.10 0.56 0.52 582
17 15.375 0.15 6.10 0.56 0.52 582
18 16.125 No Trap
19 16.875 0.11 6.10 0.56 0.39 437
20 17.625 No Trap

Trap support frames and degrees of freedom

A pair of traps is supported by two mounting frames, which are made of
rectangular galvanized steel tubing.  Each frame spans two flow channels and
supports two traps, one frame at the upstream end of the trap and one at the
downstream end, as shown in Figure 21.  The support frames are bolted to the
concrete floor of the wave basin.  Each trap is suspended at two points near the
upstream corners of the trap, where most of the sand accumulates, and one
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suspension point in the center of the downstream end of the trap.  At each
suspension point a load cell is attached to the frame, and the trap is hung from the
load cell with a stainless steel cable.  A stainless steel threaded rod at the upper
end of each cable provides a mechanism for leveling the traps during installation.
Three suspension points were used, rather than four (one on each corner) so that
the load cells only restrain the traps from vertical motion, and not in the other 5
degrees of freedom.  This guarantees that the vertical force on the load cell is not
influenced by, for example, the vertical component of a lateral load induced by
hydrodynamic forces, or from a slight rotation of the trap induced by a non-
uniform distribution of sand in the trap.  This type of design provides the most
accurate measurement of the quantity of sand in each trap, and also makes it
possible to calculate the center of mass of the mound of sand that accumulates in
each trap.  Although calculating the center of mass is not a priority, it could be
useful for determining such things as whether or not there is a relationship
between the longshore position of the center of mass in a given trap, and the
speed of the longshore current in that flow channel.  A prototype sediment trap
was constructed and tested during the design phase to optimize the design prior
to construction of the 20 traps.  Several improvements to the design were made
while evaluating the prototype.

Figure 21. Two sediment traps are suspended from a set of support frames via
stainless steel cables and load cells

Load cells and design capacities

Hermetically sealed load cells (shear beams) are used to measure the quantity
of sand in each trap.  The load cells are made of stainless steel construction and
are airtight and splash proof.  The load cells are bolted to the bottom surface of
the upper horizontal member of the support frame so that the entire sediment
trapping system has a low profile, as shown in Figure 22.  This provides
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clearance for the instrumentation bridge to traverse over the top of the sediment
traps during calibration of the wave gauges and the profile indicator.  This design
also keeps all of the mechanical components below the upper surface of the
support frames thereby eliminating interference with the suction hose of the
slurry pump during the dredging operation.

Figure 22. Stainless steel, splash-proof load cells are bolted to the bottom of the
support frames to support the sediment traps. A neoprene rubber seal
is used between the flow channel walls and the sediment traps

Three different size load cells were used with rated capacities of 250-, 500-,
and 1,000-kg, depending on the design requirements for each trap. The load cells
can temporarily support 150 percent of the manufacturers rated capacities
without experiencing permanent damage. The manufacturer specifies an accuracy
of +0.05 percent of the rated capacities, which includes errors resulting from
linearity, repeatability, and hysteresis.  During the testing phase of the prototype
sediment trap, it was concluded that the load cells are very robust with respect to
fluctuations in humidity.  However, the load cells are more sensitive to
fluctuations in temperature.  Errors induced by temperature fluctuations are
minimized by performing a �shunt-cal� on all 60 load cells, prior to each
experiment, and this procedure will be discussed in Chapter 8.

Figure 23 graphically illustrates the design capacity of each of the sediment
traps.  Two series of data are shown in the figure.  The first series represents the
maximum capacity of each trap based on the manufacturers rated capacities of
the three load cells supporting each trap. The second series represents the
maximum submerged weight of sand that each trap can hold, based on the
volumetric capacity of each trap.  These values are identical to the values listed
in the last column of Table 2.  As discussed previously, this assumes that the
traps are completely submerged and completely filled with sand along the entire
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length of the trap (a very extreme case).  As illustrated in the figure, the
maximum capacity of each trap is limited by the maximum submerged weight of
sand that the trap can hold, based on the volume of the trap, rather than the rated
capacities of the load cells.  Selection of the size of load cells used on each trap
was made to maximize the accuracy of the measurements, while at the same time
protecting the load cells from the possibility of over loading.

Figure 23. Design capacity of the sediment traps in terms of the total load cell
capacity and the maximum submerged weight of sand that each trap
can hold based on the volumetric capacity of each trap

Sealing the perimeter of the traps

To prevent sand from filling in the gap beneath a trap, each trap is sealed on
the upstream edge and on the two side walls using neoprene rubber sheeting, as
shown previously in Figure 22.  The seal between a flow channel side wall and
the inside wall of the trap is made by compressing the rubber sheet between the
wall and an aluminum clamping bar and then bolting the clamping bar to the
wall.  The sheet is clamped on both the trap and flow channel walls.  At the
upstream end of the traps, a single rubber sheet was laid along the entire width of
the concrete beach to form the upstream seal for all the traps.  The sheet was slit
at each flow channel wall and slid into place.  Within each trap, this rubber sheet
was clamped to the upstream edge of the trap in the same manner that the side-
walls were sealed.  The other end of the sheet was compressed between the
concrete beach and the stack of bricks used to build the adjustable boundary at
the downstream end of the beach.  The sand beach was back-filled against the
bricks to cover any exposed rubber sheeting which extended beyond the
upstream end of the brick boundary.  A sand-tight seal was created between the

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

-2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sediment Trap No.

C
ap

ac
ity

 (k
g)

Total capacity of three
load cells

Maximum submerged
weight of sand based
on volume of trap



Chapter 4     Sediment Trapping and Dredging Systems 41

upstream and side wall sheets by trimming the overlapping upstream sheet and
binding the two sheets with a special cement and stainless steel rivets.  Silicone
caulking also was used to aid in the sealing process.

Dredging System
During the course of an experiment that has been in operation for a

significant amount of time, the sand that has accumulated in the traps is dredged
from the traps and discharged onto the updrift end of the beach.  Depending on
the magnitude of the waves and currents in a particular experiment, the quantity
of sand that accumulates in the traps prior to dredging can range from 1,000 to
2,000 kg, or even greater.  The decision to dredge the traps is dictated by one or
both of the following criteria:

a. The updrift end of the beach has eroded significantly, causing a
perturbation in the bathymetry and, hence, the nearshore processes in that
region, because sand is not fed onto the beach during the experiment.

b. Sand has accumulated at the updrift end of the sediment traps, causing a
potential obstruction to the flow of current into the downdrift flow
channels.

An 11-hp trash pump is used to dredge and transport a sand slurry through a
series of reinforced flexible hoses to the upstream end of the beach.  It is
common practice in the construction industry to always select the diameter of the
suction hose to be larger than the diameter of the discharge hose and to minimize
the length of the suction hose to avoid the possibility of cavitation inside the
pump chamber. For this pump application, however, it was not possible to follow
this rule of thumb.  The standard size suction hose to fit this pump has a diameter
of 100 mm.  However, it proved to be far too cumbersome for one person to
manually move this large-size hose from trap to trap when filled with a sand
slurry during the dredging operation.  Therefore, after some trial and error
testing, the optimum solution was to use a 50-mm suction hose and a 100-mm
discharge hose.  All of the hose is designed with wire braided noncollapsible
walls so that the hose does not collapse when draped over the top of the walls of
the flow channels and exterior walls of the basin.

The sand slurry is discharged directly onto the upstream end of the beach.   A
diffuser pipe approximately 3.0 m in length is used to distribute the sand slurry
onto the beach to minimize erosion of the beach.  The diffuser pipe can be moved
to different locations across the width of the surf zone so that the sand slurry fills
regions where the greatest amount of erosion has occurred.  This system has
proved to work quite effectively.

Static Performance Tests

Tests with traps empty and the facility drained

After the traps had been fully constructed and sealed with neoprene rubber,
several tests were conducted to assess the mechanical performance and



42 Chapter 4     Sediment Trapping and Dredging Systems

signal-to-noise ratio (SNR) of the 20 sediment traps.  The first test involved
measuring the tare-weight of the traps, as the empty traps hung freely in the air
and the facility was drained.  Data were collected on all 60 load cells
simultaneously for a duration of 80 sec, at a sampling rate of 1 Hz, which would
be the typical sampling frequency used during experiments.  The average,
standard deviation, maximum, and minimum values of the instantaneous weights
in each time series were calculated.  The total tare-weight of all 20 traps was
calculated to be 2,888 kg.  This is essentially the total weight of the materials
(aluminum and stainless steel) used to fabricate the traps.

Figure 24 shows the minimum and maximum value divided by the average
value for each of the 60 time series.  The greatest ratio of either the minimum or
maximum value divided by the average value was approximately four percent,
and only one percent on average (for all 60 load cells).  The third time series is
plotted as one plus the ratio of the standard deviation divided by the average
value.  This ratio was at most 0.6 percent and about 0.3 percent on average.

Figure 24. Statistical parameters normalized by the average value in the time
series, obtained from each load cell during tare-weight tests
conducted with the traps empty and the facility drained

Figure 25 shows the standard deviation of each time series.  These are the
same data as the third time series of Figure 24 but plotted in terms of absolute
weight, rather than normalized by the average value.  As shown, the standard
deviation was always less than 0.35 kg for average load cell readings ranging
from 22 to 97 kg.  On average, the standard deviation was about 0.15 kg.  This
magnitude of the SNR for the 60 load cells is considered excellent.

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

0 5 10 15 20 25 30 35 40 45 50 55 60
Load Cell No. (1-60)

N
or

m
al

iz
ed

 S
ta

tis
tic

al
 V

al
ue

Maximum/Average
Minimum/Average
1+(Std. Dev./Average)



Chapter 4     Sediment Trapping and Dredging Systems 43

Figure 25. Standard deviation of load cell readings measured during tare-weight
tests conducted with the traps empty and the facility drained

Two other tests were performed with the facility completely drained to assess
the accuracy of the weight recorded by each trap.  The first test involved placing
a known weight of approximately 120 kg at the upstream end of the trap.  The
total weight in the trap was measured and compared to the total weight measured
when the weight was placed at the center, and finally the downstream end of the
trap.  This process was repeated for the 20 traps.  This test was conducted to
assess the effect of various distributions of sand along the length of the trap.
Results showed that the maximum variation in the sum of the three load cells, for
all three positions, did not exceed 0.5 kg, a maximum error of less than
0.5 percent.

The final test conducted with the traps empty and the facility drained
involved placing the known weight of 120 kg in the center of Trap No. 1, and
then repeating the measurement for each of the 20 traps. The error in the total
weight recorded in each trap was less than 1 kg from the known weight of 120
kg, which is considered to be excellent.  The results of these tests showed that the
20 sediment traps are very consistent and accurate with the traps empty and the
facility drained.

Removing air bubbles from beneath the rubber seals

A number of tests were performed with the wave basin filled to a water depth
of 0.9 m, the normal operating water level for the moveable-bed experiments.
The traps were completely submerged and filled with water.  As the facility was
being filled, it was observed that air bubbles would rise to the surface,
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presumably from below the neoprene rubber seal along the sides and upstream
end of the traps.  Shortly after the facility had been filled, the submerged weight
of the traps was measured and the total weight of the 20 traps was calculated to
be 1,712 kg (relative to 2,888 kg measured with the traps empty and the facility
drained).  It was necessary to remove air from beneath the rubber seals. A rod
was used to agitate each trap about the downstream suspension point, which
released air pockets. The traps were reweighed, and the total trap weight was
calculated. The operator then spent a total of 15 min jostling the downstream end
of each trap, allowing a significant amount of air to escape from beneath the
rubber seals.  The total weight of the traps was then calculated to be 1,748 kg, an
increase of 36 kg.  In other words, about 36 ℓ of air had escaped from below the
seals during the jostling process.  The pockets of air below the seals had reduced
the total effective trap weight by about 2 percent.  The weight of some individual
traps increased by as much as 6 percent.

If air is not released from below the seals, the air pockets may escape during
an experiment, creating a potentially significant error in the quantity of sand
measured in each trap. Based on the results from this experiment, it has become a
standard procedure to remove as many air pockets as possible from beneath the
rubber seals each time the facility is refilled and prior to conducting an
experiment.

Tests with the facility full of water

The last set of static tests was performed to assess the influence of the
location of the load in the trap.  A weight of 96 kg was measured at the upstream,
center, and finally the downstream end of the trap in a similar manner as was
discussed previously with the traps empty and the facility drained.  For all three
positions, the maximum variation in the sum of the three load cells did not
exceed 1.0 kg, a maximum error of approximately 1 percent.  These errors are
slightly larger than the errors measured with the traps empty and the facility
drained.

Static tests then were conducted to quantify the measurement accuracy of all
20 traps, in a similar manner as previously conducted with the traps empty and
the facility drained.  A weight of 96 kg was placed in the center of the first trap,
measured, and then the test was repeated for all 20 traps.   The average measured
weight for the 20 traps was 95.81 kg.  The maximum and minimum weights
recorded were 98.5 and 91.8 kg, respectively.  The standard deviation was 1.5 kg,
or approximately 1.5 percent of the average.  These errors are slightly larger than
the errors measured with the facility drained. However, these results are within
the design criteria of developing a sediment trapping system with the ability to
measure the average submerged weight of sand in the 20 traps with an absolute
accuracy of 3 percent.

Dynamic Performance Tests
Dynamic tests were performed to examine the structural integrity of the trap

design while waves and currents were generated in the facility.  Three tests were
conducted.  The first test was conducted by running all 20 pumps in the LSC



Chapter 4     Sediment Trapping and Dredging Systems 45

recirculation system at approximately half of the maximum discharge rate.  The
physical response of the traps was observed, and data were collected and
evaluated.  The traps remained essentially motionless during forcing with
currents alone and did not seem to affect the variability of the measurements.
The range of fluctuations was similar to that observed during the static tests with
the facility drained.

A second and third test were conducted by including regular and irregular
wave forcing to the currents, respectively.  The wave and current conditions were
the same as those previously used during the fixed-bed hydrodynamic
experiments. The downdrift wave guide, constructed of marine plywood, was
removed for these two tests to assess the behavior of the traps in a �worst-case�
scenario, since the wave guide significantly reduces the amount of wave action
within the flow channels. There was no significant movement of the traps during
any of these tests, although they did vibrate minimally during the second and
third test if waves were generated.

Figure 26 illustrates the range of variability in the measured time series
during the second and third test.  The standard deviation for each of the 60 load
cells is plotted for both the regular and irregular wave cases.  Load Cell No.1 is
located at the onshore end and load cell No. 60 is located at the offshore end.  As
anticipated, the standard deviations decreased significantly close to the shoreline
because wave heights are much smaller in that region.  In general, the two time
series appear to be very similar with average values of the standard deviation of
approximately 3.0 kg further offshore.  These variations are significantly larger
than in the static test cases; however, it is possible to numerically filter the data
using a filtering routine during postprocessing of the data (Chapter 8). In
addition, these fluctuations were reduced considerably after the downdrift wave-
guide was reinstalled, which will be the case for the majority of the LST
experiments.

Prior to these tests, there was concern that for regular wave forcing, the traps
would be more severely agitated because the hydrodynamic loading would occur
at a constant frequency.  However, this was not the case, as shown in Figure 26.
During the regular wave case two load cells experienced a significantly high
standard deviation, but this was not attributed to the regular wave forcing,
because this increase only occurred on 2 of the 60 load cells.

Summary
This chapter documents the design, operation, and performance of the

sediment trapping and dredging system developed for the LSTF.  The mechanical
design of the sediment trapping system has proven to be structurally robust.  The
dredging system has proven to work effectively and can be operated by one
person.  Results from the static performance tests with the facility both drained
and filled with water showed that the 20 traps have an accuracy of well within
the design criteria for the system.  The dynamic performance tests showed that
pumping a longshore current in the absence of wave forcing has an insignificant
effect on the variability of the measured load cell data.  However, combined
wave and current forcing does increase the variability of the output signal from
the load cells.
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Figure 26. Standard deviation of load cell readings measured during dynamic
performance tests with empty traps using both regular and irregular
waves
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5 Beach Morphology Control

Introduction
The goal of the experiments is to obtain an accurate rate of longshore

sediment transport and its cross-shore distribution with minimal longshore
variation and boundary influences. To achieve this goal, it is necessary to
maintain straight and parallel contours throughout the model. Beaches having
�three-dimensionality� affect incident waves and, subsequently, the longshore
currents and sediment transport associated with the waves are also affected.
Therefore, it was necessary to maintain straight and parallel contours throughout
the model to the greatest degree possible. This chapter describes the method used
to construct the beach morphology and maintain straight and parallel contours to
maximize the length of beach over which longshore uniformity of waves and
currents exist in the basin.

Maintaining Straight and Parallel Contours
Sand used in the initial experiments was fine quartz sand of uniform size,

D50 = 0.15 mm. A total of approximately 125 m3 of sand was transported into the
facility by means of a tractor (Figure 27) and placed on top of the fixed-bed
concrete beach. The tractor is equipped with a front-end loader and rear box-
blade, which are used to distribute sand along the beach (Figure 28).

Stainless steel rods mounted on the bridge at 1.0-m intervals in the cross-
shore direction are used as elevation indicators to help maintain straight and
parallel contours (Figure 29). The rods are lowered to the desired elevation at
each cross-shore location and fixed in place by an anchoring collar. Moving the
bridge along the facility leaves traces in the sand at the desired beach elevation,
and indicate locations that require cutting or filling. The tractor�s boxblade and
front-end bucket are used in the longshore direction to scrape or fill sand to the
necessary elevation indicated by the rod traces (Figure 30). After a segment of
beach is cut or filled, it is necessary to check the elevations by again traversing
the rods over the beach. Several iterations of checking elevations with the rods
and grading the beach are required before the beach has acceptable uniformity.
To avoid possible breakage or bending of the rods, the depth of sand the rods are
dragged is limited to a few centimeters. Therefore, grading of the beach to an
approximate elevation may be required before the rods are used to indicate the
desired beach profile. Although most of the beach can be graded using the
tractor, it is necessary to manually cut and fill portions of the beach between rod
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Figure 27. Sand is removed from a temporary storage area, located in the
updrift, offshore corner of the facility. This compartment will hold 5 to
10 m3 of sand. If necessary, sand can be pumped from the sediment
traps directly into this storage area during the dredging process.
However, during a typical experiment, the sand in the traps is
pumped directly onto the updrift end of the beach

Figure 28. Prior to each experiment, the facility is drained, and a four-wheel drive
tractor, with a front-end loader and a rear boxblade, is used to grade
the sand beach to the desired beach profile shape
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Figure 29. Stainless steel rods are permanently installed every 1.0 m along the
updrift side of the bridge. The rods are lowered to preselected
elevations to define the shape of the proper beach profile

Figure 30. The vertical rods are used as indicators to help the tractor operator
maintain straight and parallel beach contours. In this figure, the bridge
is moving to the left, and the bottom end of the vertical rod furthest
offshore is deflected to the right as it drags along the beach. The
depth of the groove remaining in the sand indicates how much the
beach should be lowered in that region
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traces in the cross-shore direction. Hand shovels and rakes are used to cut and fill
in these areas. In addition, it is difficult to mold the beach in some regions to the
desired elevation using only the tractor. Shovels and rakes are used to mold the
steep foreshore slope or, if present, an offshore bar (Figure 31). The system of
bridge-mounted rods used with the tractor and hand tools allows the elevation to
be controlled in the longshore direction within ±1 cm. Figure 32 is a bathymetric
plot of the beach after it had been remolded.

Figure 31. Fine-tuning of the initial beach profile is achieved using a hand held
shovel and rake, especially in regions where it is difficult to use the
tractor, such as the steep front slope of the foreshore berm

During the course of an experiment it becomes necessary to replenish the
beach. As sand is trapped downdrift during an experiment, the updrift boundary
becomes depleted of sand causing non-uniformity in the longshore direction
(Figure 33). The purposes of beach replenishment are to recharge the sediment
supply at the updrift end of the beach and to restore the beach to one with straight
and parallel contours. Because the total amount of longshore sediment transport
during individual wave runs is only a small fraction of the total amount of sand
on the beach (typically less than 1 percent), continuous sand recharging during
wave experiments is not necessary. The traps are dredged as described in Chapter
4 with sand being placed on the updrift portion of the beach. The main portion of
the beach in the middle of the basin requires little attention in part to the uniform
condition maintained by the longshore current recirculation system. The beach is
rebuilt following the previously described method to the equilibrium, or quasi-
equilibrium, profile. During initial experiments, the beach evolves as it is
subjected to waves until an equilibrium, or quasi-equilibrium, condition is
established. It is desired to rebuild the beach to the profile the beach is seeking;
therefore, the average beach profile measured along the uniform portion in the
middle of the beach is used for rebuilding an evolving beach.
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Figure 32. Bathymetric plot following rebuilding of the beach

Figure 33. Bathymetric plot following 230 min of plunging waves

Adjustable Boundary Elevation
The lateral boundaries of the beach are bounded by stacked 19.5-cm-long by

9-cm-wide, 1.4-, 2.8-, and 5.6-cm-high mortar bricks placed on the fixed-bed
concrete beach. The use of bricks of varying heights allows flexibility in
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constructing the boundaries similar to the average beach profile. Additionally,
because of their density, mortar bricks are less likely to be displaced under waves
and currents than other materials.

At the onset of an experiment, the bricks are arranged so that the boundary
elevation closely matches the initial beach profile (Figure 34).  It is important
that the brick elevations at the downdrift boundary closely match the average
profile of the beach. A lower brick elevation in relation to the beach may induce
sand to enter the traps and cause an overestimate of sediment transport.
Additionally, sand near the downdrift boundary scours to the upper elevation of
the brick, which alters the local profile and uniformity of longshore currents.
Conversely, if the brick elevation is higher than the beach elevation, the bricks
act as a barrier and transport into the traps is restricted and results in
underestimation of sediment transport. For this reason, the downdrift boundary is
observed carefully during each experiment and, if necessary, bricks are removed
or added so that the boundary profile is representative of the average beach
profile.

Figure 34. The elevation of the lateral boundaries is adjusted using bricks.
Initially, the bricks are set as close as possible to match the initial
beach profile. During the experiment, the downdrift boundary is
observed carefully, and if necessary, bricks are removed or installed
so that the downdrift brick boundary has almost the same profile
shape as the average profile along the beach

Despite careful monitoring of the downdrift boundary to maintain the
boundary elevation at the average profile elevation, not all transported sand
reaches the traps. For mild to moderate longshore currents a shoal may form at
the downdrift boundary, which must be included in calculations of longshore
sediment transport. This correction is based on postexperiment surveys in which
the region near the downdrift boundary is compared with the main portion of the
beach. If a shoal is present, excess sand at the downdrift boundary is included
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with the sand measured in the traps to calculate longshore sediment transport
rates.

Summary
The process of building the beach to straight and parallel contours is labor-

intensive, but necessary to obtain an accurate rate of longshore sediment
transport. The use of a tractor and elevation indicators have been an effective and
efficient method of accomplishing this goal. The masonry brick boundaries allow
adjustment of the updrift and downdrift beach elevations to represent the average
beach profile elevation. Beach uniformity is monitored from bathymetric surveys
that follow each experiment segment. Additionally, the surveys monitor the
existence of a shoal that may form at the downdrift boundary for mild or
moderate longshore currents. The quantity of excess sand in the shoal is included
in calculations of longshore sediment transport.
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6 Experiment Control, Data
Acquisition, and Analysis
Packages

Introduction
This chapter describes the various systems used for conducting experiments

in the LSTF, including real-time experimental control, data acquisition, and
analysis.  The primary systems are:

a. MTS Systems Corporation control and data acquisition system.

b. General Experimental Control and Data Analysis Package (GEDAP)
synthesis and analysis package.

c. Display system for the ADV digital data.

d. Control system for the vertical turbine pumps.

e. Data acquisition system for the flow meters.

f. Data acquisition system for the sediment traps.

This chapter provides a brief description of each system.  For additional
information, the reader is referred to the Users Manuals and Reference Manuals
cited in each section.

MTS Control and Data Acquisition System
The MTS control and data acquisition system was developed as the primary

system for operation of the facility and consists of two primary components.  The
first component is an MTS 498 real-time controller that uses closed-loop control
to position the wave generators, the instrumentation bridge and the beach profile
indicator.  This system also contains the hardware required for calibration and
data acquisition of the wave gauges, current meters, and the beach profile
indicator.  This real-time controller is a VME-based, multichannel, digital
controller and contains a MVME 167 VME-based processor board, A/D and D/A
converters, and optically isolated digital I/O.
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The second component consists of a personal computer that provides the
operator with an interface for real-time control, data acquisition, data storage, and
analysis.  This PC has a 266-MHz Pentium processor and uses the Windows NT
operating system.  The PC is connected to the real-time controller using a high-
speed data link (MXI-bus interface).  Application software was developed with a
graphical user interface to be the primary user interface for operation of the
facility.  This application software is referred to as the �MTS control software.�

The next four paragraphs provide a brief discussion of the various functions
and organization of the MTS control software.  To avoid confusion, these
paragraphs are listed in the same order as the four pull-down menus located on
the main panel of the MTS control software (Figure 35).

Figure 35. Main panel of the MTS control software (Permission to reprint granted
by MTS Systems Corp.)

The File menu on the main panel of the MTS control software allows the
user to restore and save the system parameter settings.  A number of system
parameters must be defined prior to conducting an experiment.  These parameters
require loading immediately after starting the MTS control software.  Some
system parameters only need defining during the initial installation of the
equipment or after repair of the equipment, such as the servo control loop
adjustments, numerical limit detector settings, and ramp rate settings.  Other
system parameters, such as those that define the calibration of the wave gauges,
current meters, and the beach profile indicator require updating after every
recalibration of these sensors.   This information is saved in a �settings.set� file,
to eliminate the need for redefining all of these system parameters at the
beginning of each experiment, and also to maintain consistency between
experiments.  In addition, this menu provides options that allow the operator to
select passwords, convert acquired data files to ASCII file format and to exit the
MTS control software.

The Calibration menu on the main panel of the MTS control software
provides access to control panels for calibrating the linear actuators, wave
gauges, current meters, beach profile indicator, and other generic sensors that
may be added in the future.  The operator also can specify the number of sensors,
which will configure each control panel for the number of sensors in use during
an experiment.  In addition, there are several other control panels for specifying
other system parameters, such as the servo control loop adjustments, limit
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detector settings, Proportional-Integral-Derivative (PID) controller settings, wave
program settings, ramp rates, and the engineering units associated with each
input and output channel.

The Operation menu on the main panel of the MTS control software
provides access to the control panels for operation and real-time control of the
wave generators, instrumentation bridge, and the beach profile indicator.  The
beach profile indicator control panel allows the user to select all of the
parameters required to conduct a fully automated beach profile survey, including
the number and location of each transect and the horizontal speed of the beach
profile indicator.  Another control panel in this menu activates the data recorder,
which allows the user to record (or collect) data from any or all analog and
digital input and output channels.  The most common channels to record are the
analog output signals associated with the wave gauges and current meters.

The Display menu on the main panel of the MTS control software provides
various options for displaying the analog and digital data, as well as error
messages from the real-time control system.  Two options provide access to two
digital meters, which are the modern equivalent of a digital voltmeter.  These
digital meters are most useful for monitoring signals with a low frequency of
oscillation, such as the position of the instrumentation bridge, or the still-water
level recorded with the wave gauges prior to an experiment.  Another option
provides access to a digital oscilloscope, allowing the user to display the output
signal from any of the analog or digital channels.  The digital oscilloscope is
most useful for monitoring output signals characterized by a higher frequency of
oscillation, such as the output signal from the wave gauges or current meters,
during operation the facility.  Another control panel allows the user to read error
messages generated by system events, such as error messages from the limit
detectors.

A general description on how to operate the wave generators and
instrumentation bridge, as well as a detailed discussion on how to use all of the
control panels in the MTS control software, can be found in Chapter 4 of the
Operation Manual, MTS Systems Corporation (1998).

GEDAP Synthesis and Analysis Package
GEDAP is a comprehensive software system for the analysis and

management of laboratory data and includes real-time experiment control and
data acquisition functions.  GEDAP was designed with particular emphasis on
random wave generation and analysis in hydraulics laboratory basins.

GEDAP is being used in the LSTF to perform the following tasks:

a. Calibrate the wave generators.

b. Synthesize wave machine drive signals for regular and random wave
generation.

c. Synchronize the four piston-type wave generators when positioned at
various angles of wave approach.
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d. Analyze measured wave data from the 14 capacitance-type wave gauges.

e. Analyze measured current data from the 10 ADVs.

GEDAP is being utilized in the LSTF, because it was designed with the
following features:

a. A standard data file format so that any GEDAP program can process data
generated by any other GEDAP program.

b. An extensive library of wave synthesis and data analysis programs to
minimize the amount of project-specific programming.

c. A consistent user interface so that all programs are easy to use in either
interactive or batch mode.

d. An extensive set of well-documented subroutine libraries so that future
application programs can be developed quickly and efficiently.

e. A fully integrated graphics capability named GPLOT, to allow
conveniently plotted at any stage of the data synthesis or analysis
process.

f. A mechanism whereby data can be automatically identified whenever
they are listed or plotted, and labeled with correct engineering units.

g. Conversion utilities that allow data transfer between GEDAP files and
other standard formats, such as Microsoft Excel spreadsheets.

A block diagram of the basic GEDAP system is shown in Figure 36.  This
diagram shows the logical flow of data between the three different packages in
the software, named NDAC, GPLOT, and ANALYSIS.

The NDAC package runs on Windows NT and performs real-time Data
Acquisitions and Control functions.  However, this package is not used in the
LSTF, because the MTS control software is used for this purpose.  Therefore, to
be more precise, the words �MTS Control Software� should be substituted for the
acronym �NDAC� in the upper left corner of this diagram.  A program named
GEDAP_TO_MTS was developed to convert files from GEDAP to MTS file
format, such as wave machine drive signals, which are synthesized using
GEDAP.  Another program named MTS_TO_DAC was developed to convert
files from MTS to GEDAP file format, such as measured wave and current data
files, which are analyzed using GEDAP.
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Figure 36. Block diagram of the GEDAP� system of the Canadian Hydraulics
Centre (Miles 1997) (Permission to reprint granted by Canadian
Hydraulics Centre)

GPLOT is a comprehensive 2-D graphics package for plotting GEDAP data
files.  GPLOT is a command-driven program that can run in either interactive or
batch mode.  In interactive mode, the commands are entered directly on the
keyboard.  This mode is used primarily for viewing data and designing new plot
layouts.  In batch mode, the commands are read from GPLOT command files that
have been previously created with a text editor.  This mode is usually used for
production runs.  For example, in the LSTF several transects of wave gauge or
current meter data can be analyzed as a production run.  Fortunately, the GPLOT
command files can be generated automatically while running in interactive mode,
which greatly simplifies the task of designing plot layouts for production runs.
All plots can be output to a local printer during both interactive and batch mode
analysis.

The ANALYSIS package is the main part of the GEDAP software system
that handles all of the data synthesis and analysis functions.  This is a
comprehensive package and is organized into eight categories, as shown at the
bottom of Figure 36.  The ANALYSIS package contains all of the GEDAP
programs and subroutines except those in the NDAC and GPLOT packages.  All
of the programs used for regular and random wave synthesis, as well as
synchronization of the wave boards in the LSTF, are located under the category
entitled �2D Random Wave Generation.�  Similarly, all of the programs used for
analysis of the wave and current data are located under the categories entitled
�Frequency Domain Analysis,� �Time Domain Analysis,� and �Statistical
Analysis.�  Batch files have been developed to: (a) synthesize wave machine
drive signals and to synchronize the wave generators for both regular and random
wave generation; (b) analyze a large number of transects of data from the
14 wave gauges; and (c) analyze a large number of transects of data from the
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10 current meters.  The specific GEDAP programs used in each of these batch
files will be discussed in the next two chapters.

The GEDAP software system runs in a standard Windows NT Command
Prompt window.  By typing �GHELP� at the command prompt, the user will
obtain the main menu of the on-line documentation, as shown in Figure 37.  This
initial GHELP browser screen is split into three sections.  The upper section
includes two hyperlinks, one gives a general description of GEDAP and the other
provides a complete list and description of all GPLOT commands.  The middle
section of this figure includes hyperlinks to the eight GEDAP program
categories, which were represented earlier as the eight blocks at the bottom of
Figure 36.  The lower section includes hyperlinks that provide access to all of the
subroutine libraries. The user can click on the highlighted hyperlinks to view lists
of all of the available programs and subroutines.  Similarly, the user can click on
any highlighted program name to obtain a complete description of the particular
program or subroutine.

Additional information about GEDAP may be obtained from the GEDAP
Users Guide for Windows NT, Miles (1997).   Additional information regarding
the GPLOT graphics package can be found in the GPLOT User�s Guide
(Dominis Engineering Ltd. 1992).

Display System for ADV Digital Data
A problem encountered while procuring the ADV�s for the LSTF was that

the simultaneous digital output signals transmitted from the 10 ADVs exceeded
the capacity of the PC-based serial communication port. Therefore, each ADV
was upgraded with additional hardware to generate analog output voltage signals,
as an alternative means of collecting ADV data.  The analog output voltages are
transmitted through ten 130-m-long cables, to the MTS data acquisition and
control system.  However, the analog output signals only include the output
voltage from each velocity component and one additional output signal, which is
proportional to the mean signal amplitude.  The analog output signals do not
include all of the information that can be obtained using RS485 serial
communication (digital data), such as the SNR for each velocity component, as
well as other diagnostic information.

To solve this problem, a second computer is used in the LSTF control room
for real-time display of the digital data obtained using RS485 serial
communication.  However, digital data can be displayed from only one ADV at a
time, because of the data transfer rate limitations through the serial
communications port.  Therefore, the user must toggle from one ADV to the next
to inspect the operation of each ADV, while conducting an experiment.  The real-
time display screen is shown in Figure 38.  The upper section of the real-time
display screen shows the numerical values of velocity and other diagnostic data,
such as SNR, correlation, and the standard deviation for each component of
velocity.  The middle section of the screen shows real-time plots of SNR,
correlation, and velocity data.  The lower section of the screen lists all of the
command options, such as a toggle switch, which allows the user to display the
output from a different ADV.
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Figure 37. On-line documentation listing the program classes and subroutine
libraries of GEDAP� system of the Canadian Hydraulics Centre
(Miles 1997) (Permission to reprint granted by Canadian Hydraulics
Centre)

This real-time display system is a completely independent system and is not
integrated into the MTS Systems Corporation control and data acquisition
system.  The manufacturer of the ADV�s developed the real-time display
software.  The procedures used for calibration, measurement, and analysis of the
analog output signals, obtained from the ADV�s, are discussed in Chapter 8 of
this report.
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Figure 38. Real-time display screen for ADV® digital data (Permission to reprint
granted by SonTek 1997) (SonTek and ADV are registered
trademarks of SonTek/YSI Inc., San Diego, CA, USA)

Control System for Vertical Turbine Pumps
As discussed in Chapter 3, the speed of the 20 vertical turbine pumps is

controlled using 20 variable frequency motor controllers.  These motor
controllers are housed in a building adjacent to the LSTF control room. The
standard input frequency to a motor controller is 60 Hz.  The speed of the pumps
is controlled by adjusting the output frequency of the motor controllers, using a
human interface module located on the front of each motor controller, shown
previously in Figure 17.  The output frequency can be adjusted from 30 to 100
percent of the input frequency (i.e., output frequency = 18 to 60 Hz).  Because
there is a linear relationship between output frequency, pump speed, and pump
discharge, the discharge from the pump can be controlled from 30 to 100 percent
of the maximum discharge rate.  A detailed description of how to operate the
motor controllers can be found in, Allen-Bradley (1996).

Each of the motor controllers were equipped with optional serial
communication modules to provide a direct digital link between the 20 motor
controllers and a personal computer.  Control software could be developed that
would allow the operator to enter the required discharge rates into the computer,
and the software would calculate the output frequency for each motor controller
based on the relationship between output frequency and pump discharge,
previously shown in Figure 19.  The control software would then adjust the
output frequency of the motor controllers, based on the difference between the
measured flow rate and the required flow rate.  This would automate the present
method of manually iterating to the required pump settings.  Furthermore, using a
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personal computer to control the motor controllers would make it possible to vary
the speed of the pumps during an experiment, for example to better approximate
the time-varying longshore current magnitude generated from irregular wave
forcing.  This may be attempted in future experiments.  However, at the present
time, all pump speeds are constant during an experiment.  The method of
manually controlling the pump speed with the human interface modules has
proven to require minimal time and effort.  Therefore, the serial communication
modules are not presently used.  For further information on the serial
communication modules, see Allen-Bradley (1995).

Data Acquisition System for Flow Meters
A third computer in the LSTF control room is dedicated to data acquisition

and real-time display of data obtained from the in-line flow sensors.  As
discussed previously, these flow sensors are used to measure discharge rates from
the 20 vertical turbine pumps in the longshore current recirculation system.  This
data acquisition system is a completely independent system and is not integrated
into the MTS control and data acquisition system.  The manufacturer of the flow
sensors developed the software used for data acquisition and display.

The real-time display software allows the operator to visualize the cross-
shore distribution of flow rates through the 20 pump-and-piping systems.  These
data are displayed as a bar graph with Pumps No. 1 to 20 along the x-axis and
flow rate in liters per second along the y-axis.  The flow rate measured with each
sensor also is displayed numerically below each vertical bar in the graph.  The
data acquisition software was configured to output time-averaged values (every
30 sec) of the flow rate measured with each of the 20 flow sensors.  The output
file is an ASCII file consisting of 20 columns of data, one for each flow sensor.
The files are then imported into a spreadsheet, and the average flow rate for the
sampling interval (several minutes) is computed.  The procedure used for
obtaining the required pump settings using the manual iteration method, based on
the measured flow sensor data, is discussed in Chapter 7.

Data Acquisition System for Sediment Traps
A fourth computer is dedicated to data acquisition and real-time display of

data obtained from the sediment trapping system.  Individual cables are used to
connect the 60 load cells, which support the 20 sediment traps to the data
acquisition system housed in the LSTF control room. This system is completely
independent from the MTS control and data acquisition system.

The data acquisition and display software was developed at ERDC, via
Visual Basic, to acquire and display measured data.  The software includes two
general options for displaying the data.  The first option allows the operator to
visualize the gradual increase (or trend) in the quantity of sand in a single trap.
These data are displayed as an X-Y line plot, with time on the x-axis and weight
on the y-axis.  Four time series are plotted, the weight of sand recorded by each
of the three load cells and the total weight of sand in the trap. The second option
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allows the operator to visualize the cross distribution of the quantity of sand in
the 20 traps.  These data are plotted as a stacked bar graph with Traps No. 1
through 20 along the x-axis and the submerged weight of sand along the y-axis.
The height of the 20 bars represents the total submerged weight in each trap.  A
color-coded stacked-bar format was used to better visualize the distribution of
weight on the three load cells in a given trap on one plot.  Both options for
visualizing the data can be displayed either in real-time or in postprocessing
mode.

To minimize the size of the data files, the data are initially saved in binary
format, and an option in the software can convert data into ASCII format. Two
options for the structure of the ASCII output files are available. The first option
outputs 60 columns of data, each representing the time series for each of the load
cells.  These files can be imported directly into a spreadsheet or analyzed using
other programs.  However, these output files are usually very large, since the
sample duration can range from 1 to 2 hr in length.  The second option outputs
only a summary of the standard statistical parameters that represent the 60
individual time series: average, minimum, maximum, and standard deviation for
each time series.  These files are considerably smaller.  These statistical
parameters are not very meaningful, however, if they represent the gradual
increase in the quantity of sand in each trap during the experiment.  Nonetheless,
they are very useful if, for example, the quantity of sand in each trap was
measured (for say 100 sec at 1 Hz) prior to and immediately after conducting the
experiment, to verify the results obtained during the experiment.  Options also
are available for printing of the results.  The procedures used for calibration,
measurement, and analysis of these data are discussed in Chapter 8 of this report.

Summary
The LSTF is a complex facility and consists of many different types of

equipment and instrumentation.  With respect to real-time control of the
equipment in the LSTF, 14 channels are presently being used; 8 command and
feedback channels for the four wave generators, and 6 command and feedback
channels for the three drive motors on the instrumentation bridge.  In addition,
the speed of the 20 vertical turbine pumps is accurately controlled by manually
toggling the human interface module on the front face of each motor controller.
With respect to data acquisition, 132 channels are presently being used; 14 wave
gauge channels, 38 ADV channels, 20 in-line flow sensor channels to measure
the discharge from the 20 pumps, and 60 load cell channels to measure the
quantity of sand in the 20 traps.

The various real-time control systems, data acquisition systems, and analysis
packages discussed in this chapter provide the operator with the capability to
confidently manage all of this equipment and instrumentation, and therefore
conduct a well controlled laboratory experiment in the LSTF.  Experience has
shown that all of these systems can be operated simultaneously by two operators.
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7 Wave Generation and
Current Recirculation

Introduction
This chapter contains two major sections.  The first section deals with the

subject of generating waves in the facility, and specifically describes the
procedures used to: (a) calibrate the wave generators; (b) synthesize regular and
irregular wave drive signals; (c) synchronize the wave generators to create
unidirectional long-crested waves; and (d) generate waves using a new drive
signal.  The second section deals with the subject of recirculating the longshore
current using the longshore current recirculation system described in detail in
Chapter 3.  This section specifically describes the procedures used to:
(a) calculate the required pump discharge rates after the cross-shore distribution
of the depth-average longshore current to be recirculated has been determined;
and (b) set the speed of the pumps to achieve the required discharge rates from
the 20 vertical turbine pumps.  This chapter provides a conceptual overview of
these procedures.

Wave Generation
All of the programs discussed in this section can be found in the �2D

Random Wave Generation� category of the GEDAP analysis package.  The
location of this category with respect to the overall structure of the GEDAP
system was shown previously in a block diagram in Figure 36.  For several of the
procedures discussed below, GEDAP batch files were created to simplify and
standardize the procedure to maintain consistency from one experiment to the
next.

Calibration of wave generators

The wave generators are calibrated by using a static calibration drive signal
that is generated using program RWREP5, an acronym for Random Wave
Reproduction.  This calibration signal is used to slowly and smoothly move the
four wave boards from zero to full forward stroke and then to full reverse stroke.
The wave boards are held steady at the full forward, and the full reverse stroke
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positions for a period of 10 sec to accurately measure the wave board
displacement.

These calibration measurements are entered into program WMCAL, an
acronym for Wave Machine Calibration, which produces a wave machine
calibration file.  The calibration drive signal includes an extra 2-sec pause at
50 percent of full forward stroke.  This pause is used to verify the polarity of the
drive signals.  If this extra pause occurs on the reverse stroke of the wave board
instead of the forward stroke, the wave machine has reverse polarity.  In this
case, RWREP5 multiplies the drive signal by -1 so that the generated waves will
have correct polarity and phase.  After the static calibration is complete, all of the
control parameters related to each particular wave machine can be obtained
directly from the calibration file.

GEDAP also includes a method of dynamically calibrating the wave
generators to compensate for the magnitude and phase lag of the wave boards at
higher frequencies.  This procedure was carried out initially, however, the results
proved that the servo-electric drive systems of the four wave generators in the
LSTF have very minimal magnitude and phase lag at higher frequencies.
Therefore, only the static calibration procedure described above is required.

Synthesis of regular wave drive signals

A GEDAP batch file named REGULAR_WAVE_SYNTHESIS has been
developed to synthesize regular wave drive signals.  This batch file runs the
program RWREP5, which includes the regular wave generation options: (a) the
user specifies the wave height and the wave period; (b) the user specifies the
wave height, and the program calculates the corresponding period for a wave of
maximum steepness based on the breaking wave limit; and (c) the user specifies
the wave period, and the program calculates the corresponding height for a wave
of maximum steepness based on the breaking wave limit.  Option a is normally
used for experiments in the LSTF.  The program RWREP5 obtains calibration
information for each wave generator from the four wave machine calibration files
created using the program WMCAL.  Four drive signal files are output from the
program RWREP5, one to drive each of the wave generators.

Synthesis of irregular wave drive signals

A GEDAP batch file named IRREGULAR_WAVE_SYNTHESIS was
developed to synthesize irregular wave machine drive signals.  The general
procedure consists of the following steps.  First, the program PARSPEC, an
acronym for Parametric Spectra, is used to synthesize a wave energy spectrum
using one of the theoretical parametric models.  The option for a Texel, Marsen,
and Assloe (TMA) shallow water spectrum is normally used in the LSTF.
Several input parameters need to be defined, including the water depth at the
wave generators, the frequency of the wave spectrum peak, the peakedness factor
of the spectrum, and the significant wave height.
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The program RWSYN, an acronym for Random Wave Synthesis, then is
used to synthesize a pseudo-random wave train on the basis of a specified target
spectrum obtained using PARSPEC.  Each wave train consists of a time series
record of wave elevation.  Several input parameters require defining, including
the model scale factor (normally = 1.0) and the duration of the wave train.
Typically, the duration of the wave train is normally set equal to 200 × Tp, the
peak period of the wave spectrum.  The length of the wave record is equal to the
recycling period, the interval at which the control system automatically cycles
back to the beginning of a time series when the MTS control software reaches the
end of the time series.  The wave train time series can be generated using one of
three different methods, although the Random Phase Method is normally used.
In this technique, the phases of the Fourier components are chosen at random, but
the amplitudes are set deterministically according to the target spectrum.  The
resulting wave records thus have spectra that exactly match the target spectrum.

Next, the program RWREP5 is used to compute the wave machine drive
signals to drive the four wave generators.  These drive signals define the
commanded position of the actuators (i.e., the position of the wave boards) of the
wave machines, as a function of time.  Several input parameters must be defined,
including the water depth at the wave generators, the lower and upper cutoff
frequency, and a wave amplification factor, WAF (usually WAF = 1.0).  If the
calibration process was carried out correctly, the measured wave height should be
within 10 percent of the required wave height (with WAF = 1.0).  After the
waves have been generated and measured, the wave amplification factor can be
adjusted to either increase or decrease the generated wave height.

Synchronization of wave generators

The program RWREP5 also contains a subroutine to synchronize the four
wave generators to create unidirectional long-crested waves with a total wave
front 30.5 m in length.  Four wave propagation distances are entered into the
program RWREP5, one for each wave generator.  The propagation distances are
calculated based on the length of each wave board (L = 7.64 m) and the geometry
of the layout of the wave boards. The propagation distance is the distance that a
wave must propagate to be in phase with waves generated by the adjacent wave
generator (travelling in the shoreward direction).  This can be illustrated most
effectively by referring to Figure 1 and by taking note of the layout and
numbering of the wave generators. Waves generated from Wave Board No. 1 are
closest to shore for all angles of incidence. If the boards are positioned at a
10-deg angle of incidence, relative to shore normal, Wave Board No. 2 is
1.347 m further offshore than wave board No. 1.  Wave Board No. 3 is 2.694 m
(2 × 1.347 m) further offshore than Wave Board No. 1, and Wave Board No. 4 is
4.041 m (3 × 1.347 m) further offshore than Wave Board No. 1.  In this case, the
propagation distance is 1.347 m.  The drive signal for Wave Generator No. 1 is
considered to be the master drive signal.  Therefore, the drive signals for Wave
Generators No. 2, 3, and 4 are a function of the master drive signal, and have the
appropriate increase in phase at all wave frequencies to create unidirectional
long-crested waves.  Figure 4, shown in Chapter 2, shows the four wave
generators creating unidirectional long-crested waves.  This photograph was
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taken looking along the crest of the 30.5-m-long wave front created by the
synchronized generators.

For both of the above mentioned batch files, the last step in the synthesis
process is to convert the four individual drive signals (initially in GEDAP file
format) into a single file consisting of four arrays of data (MTS file format); one
array for each of the four wave machine drive signals.  Therefore, the final output
from both of these batch files is a single file containing the synchronized drive
signals for all four wave generators.

Generating waves

Waves are generated using the wave machine drive signal file in the Wave
Programs control panel, found under the Operation menu of the MTS control
software.  The layout of this control panel is shown in Figure 39.  The operator
can select the length of time for which waves will be generated by selecting the
desired number of times the file should be repeated.

The operator should visually observe
and listen to the wave generators for the
full duration of the drive signal when a
new drive signal is initially used to
generate waves, especially irregular
waves.  The operator should visually
check if the wave generators are properly
synchronized, as illustrated previously in
Figure 5.  If they are not, one or more of
the parameters discussed above may be
defined incorrectly.  Another common
problem is vibrations of the wave
generators (i.e., mechanical �clunking�),
which may be heard at high-frequency
wave periods.  In some cases, these
vibrations can be very severe.  This not
only decreases the quality of the wave
field but will also cause damage to the
wave generators if allowed to operate for
extended periods of time.  This problem is
normally caused by generating waves with
a frequency too high relative to the
magnitude of the wave height.  For the
case of irregular waves, the upper cutoff
frequency, an input parameter in the
program RWREP5, should not exceed
approximately 1.5 to 2.0 Hz for the case of
irregular waves.  Selection of the proper
upper cut-off frequency is normally
determined by trial and error.

Figure 39. Wave programs control panel in
the MTS control software
(Permission to reprint granted by
MTS Systems Corp.)
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Current Recirculation
This section discusses the method used to calculate the required discharge

rates of the pumps to recirculate the desired cross-shore distribution of the mean
longshore current. The procedure used to estimate this cross-shore distribution
will be discussed in detail in Chapter 9, and is based on the longshore current
data measured at several transects along the beach during the previous segment
of the experiment.

Calculating pump discharge rates

The method used to calculate the required discharge rates for the 20 vertical
turbine pumps is illustrated in Table 3.  These data used in the calculations were
taken from a longshore sediment transport experiment.

Column 1 lists the pump number (or flow channel number) starting at Pump
No. 1 (most shoreward) and ending with Pump No. 20 (farthest offshore).
Column 2 lists the cross-shore position of the center line of each flow channel,
with respect to the coordinate system used in the facility.  A plan view of the
layout of the pumps in the LSTF was shown previously in Figure 1, and an
oblique view, looking in the offshore direction, was shown in Figure 16.

Water depth is shown in Column 3, measured from the still-water level to the
elevation of the initial sand beach profile, which was mechanically graded using
a four-wheel drive tractor prior to the experiment.  This initial beach profile was
shown previously in Figure 4.  Depths listed in this column were measured along
the beach profile at the center line of each flow channel.

Column 4 lists the average beach profile depth in front of each flow channel,
based on the beach survey conducted immediately following the completion of
the previous test segment.  These values were measured relative to the still-water
level.  Each depth listed is the average value of 150 data points, obtained by
measuring the elevation of the sand bed every 0.005 m along the beach profile
transects.  In addition, the values listed in column 4 are longshore averaged
values based on six standard beach profile transects obtained using the beach
profile indicator; namely Y = 18, 22, 26, 30, 34 and 38 m.

Column 5 is the ratio of Column 4 divided by Column 3 and indicates the
longshore averaged change in the most recently measured beach profile depth
relative to the initial beach profile depth in front of each flow channel.  For
example, in this experiment the water depth in front of Flow Channel No. 1 had
increased by approximately 50 percent relative to the initial beach profile depth.
This indicates that the beach profile in that region (i.e., in front of Flow Channel
No. 1) had eroded relative to the elevation of the initial beach profile in that
region.  In a similar manner, the water depth in front of Flow Channel No. 16 had
decreased (accretion) by approximately 10 percent.  This was caused by the
formation of the offshore bar in that region of the beach profile.
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Table 3
Calculation of Discharge Rates for 20 Vertical Turbine Pumps
(1)
Pump or
Flow
Channel
No.

(2)
Center
line
X-Loc.
m

(3)
Initial
Beach
Profile
Depth
m

(4)
Measured
Average
Profile
Depth
m

(5)
Ratio
-

(6)
Measured
MWL
m

(7)
Measured
Mean
Water
Depth
m

(8)
Measured
Average
c/s Area
m2

(9)
Target
LSC
m/sec

(10)
Pump
Discharge
Rates
ℓ/sec

  1 3.375 0.014 0.021 1.505 0.010 0.031 0.023 0.100 2.322
  2 4.125 0.042 0.068 1.627 0.010 0.078 0.059 0.135 7.928
  3 4.875 0.070 0.097 1.388 0.008 0.105 0.079 0.143 11.227
  4 5.625 0.098 0.130 1.320 0.006 0.135 0.101 0.150 15.205
  5 6.375 0.126 0.155 1.228 0.005 0.160 0.120 0.145 17.356
  6 7.125 0.154 0.172 1.118 0.004 0.176 0.132 0.135 17.826
  7 7.875 0.182 0.188 1.030 0.002 0.190 0.143 0.123 17.468
  8 8.625 0.210 0.207 0.986 0.001 0.208 0.156 0.115 17.976
  9 9.375 0.238 0.235 0.985 0.000 0.234 0.176 0.113 19.767
10 10.125 0.266 0.262 0.985 -0.002 0.260 0.195 0.115 22.455
11 10.875 0.294 0.289 0.983 -0.002 0.287 0.216 0.120 25.869
12 11.625 0.322 0.317 0.984 -0.002 0.316 0.237 0.120 28.401
13 12.375 0.350 0.344 0.980 -0.002 0.342 0.256 0.105 26.925
14 13.125 0.379 0.362 0.956 -0.002 0.360 0.270 0.080 21.595
15 13.875 0.407 0.372 0.916 -0.003 0.369 0.277 0.060 16.608
16 14.625 0.435 0.393 0.903 -0.005 0.388 0.291 0.040 11.627
17 15.375 0.463 0.435 0.941 -0.002 0.433 0.325 0.025 8.118
18 16.125 0.501 0.498 0.994 0.000 0.499 0.374 0.015 5.610
19 16.875 0.594 0.581 0.977 0.000 0.581 0.436 0.010 4.356
20 17.625 0.687 0.674 0.981 0.000 0.674 0.505 0.010 5.055
Total Longshore Flow Rate Actively Pumped through the External Recirculation System = 303.7 ℓ/sec

Column 6 lists the longshore averaged elevation of the mean water level
(MWL) as measured with the wave gauges at the six standard transects.  These
values are measured relative to the still-water level.  Column 7 is the measured
mean water depth, which was calculated by adding the values listed in Column 4
to those listed in Column 6.

Column 8 is the longshore averaged cross-sectional area of the water column
in front of each flow channel (i.e., the cross-sectional area of the water column in
front of each flow channel in which the longshore current flows downstream).
These values are obtained by multiplying the values in Column 7 by a factor of
0.75 m, which is the width of each flow channel.

Column 9 lists the cross-shore distribution of the depth-averaged longshore
current, to be pumped through the lateral boundaries of the facility.  These values
are obtained using the procedure developed for establishing uniform longshore
currents which is discussed in detail in Chapter 9.

Finally, Column 10 is the pump discharge rates, for each of the 20 vertical
turbine pumps, required to recirculate the target cross-shore distribution of the
mean longshore current through the lateral boundaries of the facility.  The pump
discharge rates are obtained in liters/second (from cubic meters/second) by
multiplying the product of the values in Column 8 and Column 9 by a factor of
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1,000.  As shown at the bottom of the table, a total longshore flow rate of 303.7
ℓ/sec will be actively recirculated during the next segment of the experiment.

It should be noted that Columns 3 and 5 are not required to calculate the
pump discharge rates.  However, they are always included in these calculations,
because they provide a simple means of quantifying the change in beach profile
depth in front of each flow channel (Column 5) relative to the initial beach
profile depth (Column 3).  This is an important parameter to quantify and
monitor.  For example, even though the target longshore current distribution
(Column 9) may not be adjusted for the next segment of the experiment, the
pump discharge rates may need to be adjusted slightly as the beach profile
continues to make minor adjustments during later segments of the experiment.

Setting the speed of the pumps

There are several steps involved in setting the pumps to achieve the required
discharge rates from the 20 vertical turbine pumps.  First, the operator must
determine whether to use the low-flow or the high-flow mechanism for each of
the pump-and-piping systems discussed previously in the �Calibration and
Testing� section of Chapter 3.

Second, an estimate of the output frequency for each of the variable speed
motor controllers is determined by using the calibration curves for each system.
For example, the calibration curve for Pump-and-Piping System No. 10 was
shown in Figure 19.  As mentioned in Chapter 3, these calibration curves
generally have an accuracy of within +2 to 3 percent.

After the output frequency has been selected and the pumps have been turned
on, the flow rate through each pump-and-piping system is measured using the in-
line flow sensors.  Experience has shown that to obtain accurate and repeatable
flow rates, the flow sensors must be measured for at least 500 sec at a frequency
of 20 Hz.  If the measured flow rate is less than the required flow rate, the output
frequency of the motor controller is manually increased on the human interface
module, shown previously in Figure 17.  In contrast, if the measured flow rate is
greater than the required flow rate, the output frequency is manually decreased
on the human interface module.  This process is repeated until all of the
measured flow rates are within 1 percent of the desired flow rates for all 20
pumps.  After the low-flow or high-flow mechanisms have been selected for each
pump, the process of converging in on the correct frequency for the motor
controllers requires approximately 30 min.

During this 30-min period, the pumps force a longshore current along the
moveable-bed beach.  However, waves are not generated during this time.
Fortunately, for most conditions the sand is stable under longshore current
forcing only; i.e., the longshore current forcing alone does not usually generate
sufficient near-bed velocity to exceed the critical shear stress required to initiate
sediment transport for the sand particle size used in the LSTF.
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After the pumps have been set to achieve the desired cross-shore distribution
of the depth-average longshore current at the lateral boundaries, an experiment
can begin by generating waves.

Summary
Considerable experience has been obtained using the procedures described in

this chapter.  In regard to wave generation, GEDAP batch files were developed to
synthesize regular and irregular wave machine drive signals to maintain
consistency from one experiment to the next.  Further information regarding the
individual GEDAP programs can be obtained using the on-line documentation.

The procedure developed to calculate the required discharge rates for the 20
vertical turbine pumps to recirculate the desired magnitude and cross-shore
distribution of the depth-average longshore current has proven to be accurate and
dependable.  This procedure takes into account the complexities involved in
conducting sediment transport experiments with a moveable bed in which the
beach profile shape changes as the waves and currents interact with the moveable
bed.  In addition, the method used to set the speed of the pumps using variable
frequency motor controllers has proven to be very accurate and requires minimal
time and human effort.
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8 Sensor Calibration,
Measurement, and Data
Analysis

Introduction
This chapter describes the procedures developed for calibration of the

instrumentation in the LSTF, including the wave gauges, current meters, fiber-
optic backscatter sensors, beach profile indicator, and the sediment traps.  In
addition, this chapter documents the procedures used for measurement and
analysis of the five different types of data that are normally measured during a
longshore sediment transport experiment in the LSTF.  These data are: (a) time
series of instantaneous water level fluctuations; (b) time series of instantaneous
3-D flow velocities; (c) time series of instantaneous suspended sediment
concentrations; (d) bathymetric data of the moveable-bed beach; and
(e) longshore sediment flux data.  In addition, the method used to accurately
control the water level in the facility will be discussed.

This chapter provides a significant amount of detail with respect to the
specific steps involved in calibrating the instruments and conducting an
experiment.  In addition, many details related to the analysis of these data sets are
provided, such as a description of the steps involved in the automated GEDAP
procedures developed to analyze the wave and current data.  These details should
be useful for those involved in conducting experiments in the LSTF.

Wave Data
As mentioned previously in Chapter 2, the 14 single-wire capacitance wave

gauges are used to measure instantaneous water level fluctuations (waves) in the
facility.  There are 10 wave gauges mounted on the instrumentation bridge and
co-located with the current meters, as shown in Figure 40.  In addition, four wave
gauges are located offshore, along the toe of the moveable-bed beach, as shown
with the facility drained in Figure B-5, Appendix B.  These four gauges are
centered in front of each of the four wave generators to measure the
characteristics of the generated waves.
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Figure 40. Measurement of wave, current, and sediment concentration data

The sensor portion of the capacitance wave gauge consists of a thin insulated
wire held taut by a supporting rod.  The rod is constructed of stainless steel with
a minimum cross section to reduce flow disturbance.  The wire insulation serves
as a capacitor between the inside conducting wire and the water, which serves as
the �ground�.  The capacitance varies linearly as the water surface elevation
changes, provided the wire insulation thickness is uniform and not damaged,
(Markle and Greer 1992). Advantages of the single-wire capacitance wave gauge
are: (a) good linearity and dynamic response over a reasonable length that can be
used for fairly large waves; and (b) the gauge is stable over sufficiently long time
periods so that �gauge drift� is not a significant problem (Hughes 1993).

Calibration of linear actuators

Each wave gauge is mounted to a linear actuator that is used to raise and
lower the gauge.  The linear actuators can been seen in Figure B-4, Appendix B,
and consist of an electric motor coupled to a rack-and-pinion mechanism which
accurately raises and lowers the gauge.  This allows for simultaneous remote
static calibration of all wave gauges.  Each linear actuator includes a high
precision potentiometer that provides feedback for the position of the linear
actuator.  Calibrating these potentiometers is a semiautomated procedure and is
partially accomplished using the MTS control software.  The calibration
procedure is carried out by manually positioning the linear actuator at
approximately 10 elevations evenly spaced along the length of the actuator.  At
each elevation, the MTS control software automatically records the output
voltage from the potentiometer.  The elevation of the actuator is simultaneously
measured using a high precision measuring device.  This elevation is manually
entered into the MTS control software, and this procedure is repeated for each
elevation along the length of the linear actuator.  After all positions have been
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recorded, the MTS control software determines the calibration equation based on
regression analysis between the recorded potentiometer voltage outputs and the
manually measured elevations.  This procedure is repeated for each of the linear
actuators.

The Linear Actuator Calibrations panel can be accessed under the
Calibration menu of the MTS control software.  These actuators have proven to
have a very linear response, and a linear equation is normally representative of
these data.  This linear calibration equation is used to provide feedback for the
elevation of the wave gauge, relative to the still-water level, during the automated
calibration procedure for the wave gauges.

Calibration of wave gauges

Static calibration of the wave gauges is a fully automated procedure and is
conducted remotely using the MTS control software.  Experience has shown that
dry wave rods will not provide high-quality calibration data.  Therefore, the first
step in the automated calibration procedure is to wet the wave gauges by
temporarily submerging the entire length of each wave gauge.  After this is
complete, the linear actuators raise the gauges to locate the still-water level in the
middle of the calibration range for each wave gauge.  The gauges are
automatically lowered in preset increments until the still-water level is located at
the upper elevation of the calibration range.  The gauge response is recorded at
each elevation.  Next, the gauges are automatically raised in preset increments
until the still-water level is located at the lowest elevation of the calibration
range.  The gauges are automatically lowered in preset increments until the still-
water level reaches the midpoint of the calibration range for each gauge.  This
procedure can be conducted in approximately 30 min, since the 14 wave gauges
are calibrated simultaneously.  The wave gauges are generally calibrated prior to
each experiment.

The Wave Gauge Calibration panel, shown in Figure 41, can be accessed
under the Calibration menu of the MTS control software.  Both the linear and
quadratic fit options are available in the MTS control software, as shown in the
figure.  It is sometimes prudent to use the second-order regression equation
(quadratic) to increase the precision of the wave gauge calibration.
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Figure 41. Summary panel of wave gauge calibrations in MTS control software (Permission to reprint
granted by MTS Systems Corp.)

Measurement of waves

The wave gauges can be accurately positioned at any x-y location within the
testing region of the facility.  The cross-shore position of the wave gauges can be
adjusted at the beginning of the experiment by manually relocating the gauges
along the length of the bridge.  Figure 40 shows the wave gauges evenly
distributed every 1.5 m along the bridge, so that 10 wave gauges cover a total
range of 13.5 m in the cross-shore direction.  However, rather than evenly
distributing the wave gauges, it may be important to position a few gauges more
densely in a certain region to provide sufficient cross-shore resolution to measure
changes in the wave height gradient in response to the changing moveable-bed
beach profile.  Nonetheless, 10 wave gauges located along the length of the
bridge have provided sufficient cross-shore resolution to accurately document the
cross-shore distribution of wave height and mean water surface elevation.

During an experiment, waves are measured simultaneously with the 14 wave
gauges at a frequency of 20 Hz to provide sufficient temporal resolution to
accurately measure the profile shape of individual waves.  For most wave
conditions generated in the LSTF, the shortest wave period in the irregular wave
spectrum is approximately 0.5 sec.   Therefore, a sampling frequency of 20 Hz
provides 10 data points to delineate the profile shape of these shorter period
waves.
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The sampling duration is set equal to the duration of the wave machine drive
signal for two reasons.  The first being to ensure statistical wave height
parameters obtained from the wave records are a realistic representation of the
waves generated during the entire duration of the wave machine drive signal.
Secondly, it provides the flexibility to start data acquisition at any time without
synchronizing with the beginning of the wave machine drive signal, which allows
measurements of the same set of generated waves during each transect.

The longshore position of the wave gauges is selected from the control room
by automatically moving the instrumentation bridge to the desired transect
location.  The length of the test segment (generally 1 to 2 hr) limits the number of
transects that are measured.  For example, if the peak wave period is 2.5 sec, the
duration of the wave machine drive signal is normally 500 sec (200 waves ×
2.5 sec).  Therefore, a sampling duration of 500 sec is used.  In addition,
approximately 60 sec is required to move the bridge to the next transect location.
Hence, each transect would require approximately 10 min of testing time.
Therefore, a 1-hr test segment provides time to measure approximately six
transects, and a 2-hr test segment provides time to measure approximately 12
transects.  The 12 transects distributed along the length of the testing region
provide sufficient spatial resolution to quantify longshore uniformity (or
longshore gradients) in wave height and mean water level.

Wave data are collected using the Data Recorder panel, located under the
Operation menu of the MTS control software.  The layout of this control panel is
shown in Figure 42.  The Data Recorder panel allows the operator to select the
channels to record and stores data in a single binary file.  During an experiment,
the analog output signals from the 14 wave gauges and the 38 ADV channels are
recorded using the MTS control software.  The operator also can specify the
sampling rate (i.e., sampling frequency) and recording period (i.e., sampling
duration).  Further information related to using the Data Recorder panel can be
found in Chapter 4 of the MTS Operation Manual, MTS Systems Corporation
(1998).

Figure 42. Data recorder panel in the MTS control software (Permission to
reprint granted by MTS Systems Corp.)
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Analysis of waves

A GEDAP batch file was developed to automate the procedure of post-
processing several transects of wave data.  The general procedure consists of the
following steps.  First, the program FILT_FFT is used to remove the low-
frequency wave energy in the surf zone which results from a slowly fluctuating
mean water level.  This step is especially important in shallow water near the
shoreline.  This program uses a rectangular bandpass filter to remove all wave
energy that occurs at frequencies below F1 Hz and at frequencies above F2 Hz.
The fast Fourier transform (FFT) of the input signal is computed and the
rectangular bandpass filter is applied in the frequency domain.  An inverse FFT is
used to obtain the filtered output signal.  During recent experiments conducted
using irregular waves with a peak frequency of 0.67 Hz, F1 = 0.33 Hz was
selected as the low-frequency energy cutoff.  The upper cutoff frequency, F2,
was set equal to the Nyquist frequency.

The program VSD, an acronym for Variance Spectral Density analysis, is
used to calculate the peak frequency and the energy-based significant wave
height of the filtered output signal.  The program ZCA, an acronym for Zero
Crossing Analysis, also is used to calculate the average and maximum wave
height as well as the average wave period of the filtered output signal.  In
addition, the program STAT1 is used to calculate the root-mean-square wave
height and the mean water level for the filtered output signal.

Finally, the GEDAP program PLUCK is used to collect the corresponding
values of the seven statistical parameters discussed above from the headers of
each of the output files.  The final result is an ASCII file consisting of 10
columns of data.  The first three columns identify the wave gauge number and
the x- and y-locations.  The last seven columns contain the values of the seven
statistical parameters discussed above for the 14 wave gauges.  As many as 12
transects have been measured during a 2-hr segment of an experiment.  The
ASCII file lists the statistical results obtained from the 12 transects, one transect
below the other.  All of the wave data can be analyzed in approximately 15 min.

Examples of the cross-shore distribution of the measured wave height during
a regular wave and irregular wave experiment are shown in Chapter 9.  In
addition, the cross-shore distribution of the measured mean water surface
elevation for the same two experiments, are shown in Chapter 9, as well.

Current Data
As mentioned previously in Chapter 2, the 10 ADVs are used to measure 3-D

flow velocities (currents) in the facility.  The ADVs are mounted along the
downstream side of the instrumentation bridge and are co-located with the wave
gauges, as shown in Figure 40 and Figure B-4, Appendix B.  The ADVs are
configured to operate at 10 MHz because measurements are required in shallow
water and a high spatial resolution is needed to quantify the vertical velocity
profile in shallow-water depths.
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Calibration of ADVs

Calibration of an ADV is based on the geometry of the acoustic transmitter
and receiver as well as the speed of sound in water.  Unlike capacitance wave
gauges, ADVs do not require calibration on a regular basis. The manufacturer�s
calibrations give reliable results, provided that the acoustic transmitter and
receivers are not damaged.  The only parameter that influences the calibration of
the ADVs is the speed of sound in water, which should be compensated for on a
daily basis.  Therefore, the water temperature in the facility is monitored daily
and the temperature in degrees Celsius is entered into the ADV software prior to
each experiment.

The calibrations can be verified by towing the ADVs through the water while
driving the bridge along the rails at a constant speed.  However, because the
facility holds a large volume of water (1,350 m3, for a water depth of 0.9 m), it is
important to allow the water several hours to become completely quiescent
before conducting these tests.

Custom designed 1.8-m-tall vertical struts and mounting devices were
designed to make it easy to manually raise and lower the ADV�s and to minimize
the possibility of damage.  Each vertical strut has an adjustable rubber bumper
that can be positioned at the appropriate elevation so that if the ADV is dropped
while being manually raised or lowered, the instrument would stop at the
elevation of the bumper, rather than driving the ADV sensor into the beach.
Considerable care is shown when moving the ADVs to ensure that the orientation
of the sensors is maintained and that the acoustic transmitter and receivers are not
damaged.

Calibration of analog signals

As mentioned previously in Chapter 6, the serial communications port does
not have sufficient capacity to simultaneously transmit digital output signals from
10 ADVs at a frequency of 20 Hz.  Therefore, the digital data obtained from the
ADVs is used only for real-time display of single ADV channels.  Each ADV
was upgraded with additional hardware to generate analog output voltages, which
are transmitted through ten 130-m-long cables, to the MTS control and data
acquisition system.  The analog output voltage from the ADVs ranges from 0 to
5 V and is equivalent to a velocity range of +100 cm/sec.  In contrast, the voltage
range of the analog-to-digital converters in the MTS control and data acquisition
system is +10 V.  Because the system is linear, +10 V is equivalent to 300 cm/sec
and -10 V is equivalent to -500 cm/sec, as illustrated in Figure 43.
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Figure 43. Relationship between the output voltage range from the ADVs and
the range of the A/D converters with respect to engineering units

Scaling the analog output signals from voltage to velocity is accomplished by
using the Existing Sensors panel, shown in Figure 44, which is located under the
Calibration menu of the MTS control software.  The 38 ADV channels require
scaling as shown in this manner.

Additionally, it is possible for the
voltage level measured with the MTS
control and data acquisition system to
differ slightly than the voltage output from
the ADVs.  These differences are most
likely caused by temperature fluctuations
that cause variability in the impedance of
the 130-m long analog cables.  Therefore,
the analog output signals from the ADVs
are calibrated on a regular basis to
compensate for these small variations.
Calibration is performed by commands in
the ADV software that force each ADV
system to output a precise and constant
analog voltage of either 0.000 or 5.000 V.
The water in the facility does not require
motionless to conduct this procedure.  The
first step in the process is to force a given
ADV system to output 0.000 V.  If the
analog-to-digital converter does not read exactly 0.000 volts, the value of the
offset is adjusted using the A/D-D/A Converters panel as shown in Figure 45.
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Figure 44. Existing sensors panel in the MTS
control software is used to scale
the analog output signals from
voltage into engineering units
(Permission to reprint granted by
MTS Systems Corp.)
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Next, the ADV system is forced to output
5.000 V, and, the value of the gain is
adjusted if the analog-to-digital converter
does not read exactly 5.000 V.  This
procedure is repeated for the 38 ADV
channels.  This calibration process
requires approximately 1 hr and should be
checked on a monthly basis to compensate
for significant changes in ambient
temperature.

Measurement of currents

The ADVs can be accurately
positioned at any x-y location within the
testing region of the facility, as is the case
for the wave gauges.  The procedure used
to measure currents is essentially the same
as that used to measure waves.  In
Figure 40, the ADVs are evenly distributed
every 1.5 m along the bridge, so that 10 ADVs cover a total range of 13.5 m in
the cross-shore direction.  The longshore position of the ADVs is selected from
the control room by moving the instrumentation bridge to the desired transect
location.

The sampling frequency and duration for measuring the currents is always
identical to that used to measure waves because one of the objectives is to
synchronize the wave and current measurements.  In addition, the 38 ADV
analog signals are recorded using the same Data Recorder panel in the MTS
control software as the wave gauges, shown in Figure 42. Therefore, the
sampling frequency and duration are the same for both wave and current
measurements.

The orientation of the ADVs is critical.  However, because of the high-
quality mounting devices that were built to mount the ADVs to the bridge, this
issue only needs consideration when one or more of the ADVs are repositioned
along the bridge.  Upon initial installation of the ADVs, the y-axis was accurately
aligned to be parallel with the longitudinal axis of the bridge.  When an ADV is
relocated along the bridge, the alignment of the vertical mounting struts, and
hence, the orientation of the ADV is verified.  The mounting mechanism ensures
that the ADV does not rotate with respect to the vertical strut.  The orientation of
each ADV can be verified during a tow-tank experiment.  If the ADVs have the
proper orientation, the cross-shore velocities should be essentially zero as the
bridge traverses along the support rails.

Seeding material and SNR

To ensure that high-quality velocity data are collected using the ADVs, a
minimum SNR of 10 to 15 decibels (db) is to be maintained throughout the
sampling duration.  The SNR is monitored using the real-time display system for
the ADV digital data, shown in Figure 38.  The ADV velocity data appears

Figure 45. A/D-D/A converters panel in the
MTS control software is used to
adjust the gain and offset values for
the ADV analog output signals
(Permission to reprint granted by
MTS Systems Corp.)
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�noisy� when scattering material in the water is low.  Low SNR was a problem
during the fixed-bed hydrodynamic experiments, as discussed in Chapter 9.  To
solve this problem, the manufacturer recommended inserting into the water
particles having a density near that of water and a mean diameter of 10 to 20
microns.  Neutrally buoyant particles remain in suspension without additional
stirring, and the size recommended provides a relatively strong echo per unit of
concentration.  The manufacturer recommended using hollow glass spheres with
a mean diameter of about 10 to 20 microns.  However, this special seeding
material could only be purchased in large quantities at a cost of $200 for 20 kg.

After much trial and error, it was determined that the natural soil which
exists in the Vicksburg, MS, area is an excellent soil to use as a seeding material.
Therefore, prior to each fixed-bed hydrodynamic experiment, two 20-ℓ buckets of
dry soil were distributed throughout the testing region of the facility.
Immediately prior to the experiment, a hand-held rake was dragged through the
water to stir the soil up into the water column.  This increased the SNR readings
from as low as 5 db up to 15 to 25 db even before waves were generated.  After
waves were generated, the SNR reached values ranging from 30 to 50 db, which
is more than adequate to ensure high quality velocity data.

It should be noted that for the moveable-bed LST experiments, the sand used
to construct the beach provides sufficient scattering material while waves are
generated to produce SNRs of 30 to 40 db, and therefore natural soil does not
need to be added as a seeding material.

Quality of current data

The reliability of velocity data obtained using acoustic current meters is
adversely affected by the presence of air bubbles in the flow.  The speed of a
sound wave is changed by the presence of bubbles, resulting in a significant error
in the velocity measurement, Hughes (1993).  This is a problem encountered in
the LSTF when making velocity measurements in very shallow water, since
breaking waves force air bubbles down into the water column, sometimes to the
depth of the ADV sensor.  If this occurs, erroneous spikes appear in the velocity
time series.  However, these spikes are removed during postprocessing using a
GEDAP filtering routine, developed specifically to remove spikes with these
characteristics.  Waves that break farther offshore do not cause a problem,
because the air bubbles do not generally penetrate down to the depth of the
acoustic transmitter and receivers.

The manufacture�s performance specifications for the ADVs indicate an
accuracy of  +1 percent of the measured velocity, or +0.0025 m/sec for velocities
less than 0.25 m/sec.  However, it is very difficult to verify these specifications in
a facility that holds 1,350 m3 of water, because the water rarely is totally
motionless.  Nonetheless, tow tank tests have been carefully conducted using the
bridge and to tow all 10 ADVs through the water at an average speed of 0.2 and
0.3 m/sec.  A stopwatch was used to measure the elapsed time as the bridge
moved at a constant speed over a distance of 20 m.  These tests were conducted
for both the x- and y-axes of the ADVs and also were used to verify that the
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orientation of the ADVs was accurately aligned with the coordinate system used
in the facility.

The average velocities obtained from the eight 3-D down-looking probes
(ADVs 3 through 10) seemed to indicate that the performance specifications
listed above were reasonable.  However, the two 2-D side-looking probes (ADVs
1 and 2) measured significantly lower values on the y-axis than on the x-axis.
For the 2-D side-looking ADVs, the positive x-axis is defined from the acoustic
transmitter to Acoustic Receiver No. 1 (painted red).  The positive y-axis is
defined along the axis perpendicular to the acoustic transmitter from the sensor
towards the sampling volume.  After much investigation, it was determined that
the acoustic transmitter and receivers on the side-looking sensors cause
significant flow disturbance when water is flowing parallel to the y-axis of the
ADV.  Because quantifying the longshore current in the facility is a higher
priority than quantifying the cross-shore current, the decision was made to
permanently rotate ADVs 1 and 2 by 90 deg in the clockwise direction.
Therefore, the positive x-axes of ADVs 1 and 2 are aligned to be parallel with the
negative y-axis of the coordinate system used in the facility (i.e., downstream).
In addition, the analog voltage cables for ADVs 1 and 2 were reversed on the
back of the MTS data acquisition system so that the orientation of the ADV axis
remains consistent with the overall coordinate system used in the facility.  In
addition, the voltage signal signs were transposed so that the positive and
negative directions were correct.  This was accomplished by changing the
appropriate signs on the x- and y-axes of ADVs 1 and 2, using the Existing
Sensors panel showed in Figure 44.  Additional information in regard to the
operation of the ADV software and hardware can be found in the Operation and
Reference Manual, SonTek (1997).

Analysis of currents

A GEDAP batch file was developed to expedite the procedure of post-
processing several transects of current data.  The general procedure consists of
the following steps.  First, the program GLITCH_FIX_4A is used to remove
spikes in the velocity time series caused by air bubbles entrained in the water
column.  This program was developed specifically for the type of spikes
observed in the output time series from the ADVs used in the LSTF. Input
parameters required to operate the program are: (a) the time scale length (TSL) of
the sliding window that moves along the time series; and (b) the number of
standard deviations, Alpha, used to define the upper and lower limits of the valid
data with respect to the mean value within the sliding window.  Initially, the
program searches the input record to find the TSL segment having the smallest
standard deviation.  The purpose of this search is to provide an initial estimate of
the mean and standard deviation of the true signal without noise glitches.  A TSL
value of 5.0 sec worked well for experiments conducted with a peak wave period
of 2.5 sec.

Input parameter Alpha is usually set to a value between 3.0 and 4.0.
Theoretically, a value of Alpha = 3.5 should have no measureable influence on
the true signal, assuming that the data have a Gaussian distribution.  Based on
experience, Alpha is typically selected as 3.5, which sets the initial data limits to
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be +3.5 times the standard deviation about the mean.  Data points outside the data
limits are discarded, and the mean value is recalculated for the remaining data set
within the sliding window.  Smaller values of Alpha sometimes are used for
ADVs 1 and 2 because these signals contain many glitches that result from the
presence of air bubbles in shallow water. However, good judgement is required
in the selection of Alpha, because valid parts of the signal may be removed.  The
remaining set of valid data points is sorted into increasing order by time, and
linear interpolation is used to replace points removed by the program.  Therefore,
the length of the filtered time series is the same as the original time series, and
the 38 channels of current data remain synchronized.  Normally, only ADVs 1
through 4 need to have glitches removed from the velocity signal, since these are
the sensors that are located in shallow water depths.

At this step in the analysis, the batch file pauses allowing the user to
superimpose the filtered time signal onto the original time series, which contains
spikes caused from the entrained air bubbles.  This is integrated into the GEDAP
batch routine and is plotted using GPLOT, as shown in Figure 46.  This figure
shows the results of filtering the y-axis (longshore) time series for ADV 2.  These
results were obtained using a value of Alpha = 3.5, which works well if the true
signal has a Gaussian distribution.  It sometimes requires several iterations to
determine the optimum value of Alpha.  However, it should be mentioned that in
some cases, the number of spikes are so numerous that the signal cannot be
properly filtered to obtain a time series free of spikes.  If this is the case, the time
series is discarded.  A more complete description of this filtering routine is
available in the GEDAP on-line documentation.

After the signals in shallow water have been filtered, the program STAT1 is
used to calculate the minimum, mean, maximum, and standard deviation of the
velocity signals for both the x- and y-axes.  The mean value obtained from the y-
axis of the 10 ADVs defines the cross-shore distribution of the longshore current.

Finally, the GEDAP program PLUCK is used to collect the values of the four
statistical parameters calculated using STAT1 from the header of each of the
output files.  The final result is an ASCII file consisting of six columns of data.
The first two columns identify the channel number and ADV number and axis.
The last four columns contain the values of the four statistical parameters
discussed above for all 38 ADV channels.

As mentioned previously, as many as 12 transects have been measured
during a 2 hr segment of an experiment.  In contrast to the GEDAP batch file
used for postprocessing the wave data, the batch file processes only one transect
of current data, because several iterations may be necessary to determine an
optimum value of Alpha.  One transect of current data can be analyzed in
approximately 15 min.  Therefore, approximately 3 hr would be usually be
required to process12 transects of current data.

Examples of the cross-shore distribution of the measured mean longshore
current during a regular wave and irregular wave experiment are shown in
Figures 66 and 68, Chapter 9.
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Figure 46. Comparison of longshore current measured with ADV No. 2, before
and after removing spikes caused by air bubbles in shallow water

Sediment Concentration Data
As mentioned previously in Chapter 2, four vertical arrays of Fiber-Optic

Backscatter Sensors (FOBS) are located along the length of the bridge.  Each
array of FOBS simultaneously measures sediment concentration at 19 elevations
above the sand bed.  Each vertical array consists of a lower and an upper array.
The lower array is designed to measure sediment concentration close to the bed,
where the gradients in concentration are largest.  This array has eight sensors
with a vertical spacing of 1.0 cm and has sufficient mechanical strength to
penetrate slightly into the sand bed without being damaged.  The bottom sensor is
deployed directly on the bottom to serve as an elevation reference for the
remaining sensors. The upper array has 11 sensors with a nearly logarithmic
vertical spacing and measures the sediment concentration in the upper portion of
the water column where the gradients are generally weaker.  Each vertical array,
consisting of 19 sensors, covers a total vertical range of 0.53 m.  Therefore, when
located in shallow water, the upper array may be located above the water surface.

Calibration of FOBS

Each of the four vertical arrays was calibrated in a calibration tank,
consisting of a sealed vertical chamber which holds a water-sand mixture and has
a known volume.  A pump recirculates the water-sand mixture through the
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vertical chamber, maintaining a homogeneous concentration of sand within the
vertical chamber.  The 19 sensors on a vertical array are calibrated
simultaneously, and each sensor is sampled at a frequency of 16 Hz for a
duration of 120 sec.

The first data point is obtained with no sand in the water.  A second data
point is obtained after an accurately measured mass of sand is added to the
mixing chamber to obtain a sediment concentration of 10 g/liter.  This process is
repeated for sediment concentrations ranging from 0 to 80 g/liter, in increments
of 10 g/liter.  The FOBS were calibrated using the same sand that was used to
construct the moveable-bed beach in the LSTF.

Figure 47 shows the calibration results for Sensor No. 1 (i.e., the lowest
sensor) on Vertical Array No. 1.  The manufacturer of the FOBS has found that
for clean beach sand, the magnitude of the output signal from the sensors
(measured in �counts�) is a nearly linear analog of suspended sediment
concentration, over the range from 0 to 100 g/liter.  However, it was found that
for the sand used in the LSTF (D50 = 0.15 mm, with a narrow particle size
distribution), a third-order polynomial is needed to match the low and high range
of the calibration data.  In addition, the scale used to represent the magnitude of
the output signal is quite large (i.e., counts ranging from approximately 2,000 to
4,000), and more significant digits are needed to define the coefficients of the
polynomial with sufficient accuracy.  Based on the results from a sensitivity
analysis, seven significant digits are used for each coefficient in the equation,
although only five are shown in the figure for clarity.

Figure 47. Calibration results for FOBS No. 1 on Vertical Array No. 1
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Measurement of sediment concentration

The FOBS can be relocated at various positions along the length of the
bridge in a similar manner in which the wave gauges and current meters are
distributed.  Each array of FOBS is co-located about midway between the wave
gauges and the current meters.  Figure 40 shows, one of the vertical arrays
midway between the wave gauge and the current meter, directly beneath the
person standing on the bridge.  In this particular case, a large portion of the upper
array was above the water surface, since the water depth was significantly less
than the vertical range of the 19 sensors on the vertical array.

One of the most common problems associated with sediment concentration
measurements is determining the elevation of the sensors relative to the surface
of the sand bed.  A standard procedure was developed to solve this problem.  The
procedure requires two people, one to monitor the FOBS data acquisition
computer and the other to adjust the elevation of the vertical array of FOBS.  The
vertical array is positioned so that the lowest sensor is well above the elevation of
the sand bed. The vertical array is slowly and carefully lowered until the output
signal from the lowest sensor gives a full-scale reading, which indicates that the
lowest sensor has penetrated the surface of the bed.  If the vertical array is
lowered too far, the second lowest sensor will penetrate the sand and also will
output a full-scale reading. If no waves are present, the array is raised until the
output signal from the second lowest sensor returns to zero. However, if waves
are present and sediment is present in the water column, the array must be re-
deployed.  After the array is positioned correctly, the elevation of the vertical
array is locked into position, and this procedure is repeated for the remaining
vertical arrays.  At this point, data collection can begin.

Using this method, the maximum vertical positioning error is +1.0 cm.
However, with experience, it was determined that the elevation of the lowest
sensor can be positioned with a vertical accuracy of +0.5 cm relative to the
surface of the bed.  However, ripples are always present and are constantly
moving; therefore, the vertical positioning accuracy will decrease somewhat.  In
general, this method works well while waves are generated, even if the person
lowering the vertical array cannot see the lowest sensor or the elevation of the
sand bed, which is usually the case.  Prior to moving the bridge to the next
transect, the four vertical arrays of FOBS are raised so that the lowest sensors are
not touching the surface of the sand bed.

During an experiment, the four arrays of FOBS are measured simultaneously
(i.e., a total of 76 sensors) at a frequency of 16 Hz to provide sufficient temporal
resolution to measure sediment resuspension events, which often occur over
small fractions of a wave period.  The sampling duration is equal to the duration
of the wave machine drive signal, so that the average sediment concentration
obtained from the measurement is an accurate representation of the average
concentration generated by the sequence of irregular waves in the wave machine
drive signal.  Therefore, the sampling duration of the FOBS is always the same as
the sampling duration for the wave and current data.
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Analysis of sediment concentration

The first step in processing FOBS data is to remove all of the data points
with a count value less than that obtained during the calibration procedure with
no sand in the water (i.e., the x-intercept in Figure 47).  This is based on the
assumption that sediment concentration should not be less than clear water with
zero concentration.  These low values occur if the water surface drops below the
elevation of a sensor, which occurs frequently for the upper sensors located in
shallow water.

The second step is to calculate the average count value for the remaining
time series.  This average count value is used as input into the appropriate
calibration equation, and a sediment concentration is obtained.

The last step is to calculate the average concentration during the entire
sampling duration, which can be much lower than the average concentration
obtained from the time series after the unrealistically low values have been
removed.  Essentially, this step replaces the unrealistically low values with zero
counts (representing clear water) and is averaged over the sampling duration.

To illustrate the steps involved in processing the data, Figure 48 shows the
same vertical concentration profile at the three different stages of post-
processing.  These measurements were obtained using Vertical Array No.1 in
relatively shallow water during an LST experiment.  The first data set represents
the average concentration obtained using the time series prior to any post-
processing.  The second data set was obtained after the unrealistically low values
in the original time series had been removed, resulting in a significant increase in
the average concentrations measured in the upper water column.  The third data
set represents the average concentrations during the entire sampling duration,
resulting in a significant decrease in the average concentrations measured in the
upper water column.  This figure also shows that the concentrations measured
lower in the water column remain unchanged, because these original time series
did not contain any unrealistically low count values.

Bathymetric Data
Conducting a high resolution, bathymetric survey of a moveable-bed beach

with cross-shore dimensions of 18 m and longshore dimensions of 30 m could be
very laborious and time-consuming.  Therefore, as discussed previously in
Chapter 2, a fully automated, 3-D, bathymetric survey system was developed to
quantify spatial and temporal changes in the moveable-bed beach.  Since the
facility holds a large volume of water, it is not practical to drain the facility every
time bathymetric measurements are needed.  Therefore, an amphibious profile
indicator is used so that changes above and below the still-water level could be
measured.  The profile indicator is shown in Figure 8.
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Figure 48. Calculation of a vertical sediment concentration profile

Calibration of beach profile indicator

A permanent benchmark was installed to verify the �offset� in the calibration
equation for the profile indicator, to ensure consistency from one experiment to
the next.  The benchmark is located at X = 0.697 m and Y = 16.015 m on top of the
concrete beach and can be accessed by lowering the sensor down through the
moveable-bed into a 0.2-m-diam polyvinyl chloride pipe, as shown in Figure 49.
The surface of the benchmark is located at an elevation of Z = 0.742 m.   A graded
scale, with a 1.52-m vertical range, is located on the front of the vertical shaft of
the profile indicator.  The elevation of the vertical scale was adjusted so that the
vertical scale reads exactly 0.742 m if the sensor is resting on the benchmark.
The scale has a gradation of 0.01-m major increments and 0.001-m minor
increments.

The profile indicator is calibrated using a similar procedure as that used to
calibrate the linear actuators that control the elevation of the wave gauges.  The
PV-12 Profiler Calibration panel is accessed under the Calibration menu of the
MTS control software, (Figure 50).  The first step in the calibration process is to
lower the sensor onto the benchmark.  After the sensor is motionless, the �Read
Cal Step,� or toggle, button is pressed and the MTS control software records the
output voltage from the profile indicator.  The operator manually enters the
physical elevation of the sensor in the �Measured Value� column.  For example,
in Figure 50, the first calibration step obtained with the sensor resting on the
benchmark (measured elevation of 0.742 m) has an output voltage of 6.014 volts.
The profile indicator is moved offshore to a location where the sensor can be
lowered down close to the horizontal floor of the facility.  This is approximately
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Figure 49. Calibration of beach profiler indicator is verified on benchmark

the lowest limit that the profile indicator can reach, and is lower than the lowest
elevation on either the fixed-bed or the moveable-bed beach.  After the sensor is
lowered near the horizontal floor and the sensor is motionless, the toggle button
is pressed and the second output voltage is recorded.  The operator manually
enters the physical elevation of the sensor.  The vertical shaft of the profiler is
raised 0.1 m, and the third calibration point is recorded.  This process is repeated
in increments of 0.1 m using the vertical scale to obtain the physical elevation at
each calibration step.   After all 15 data points have been collected; the toggle
button is pressed to calculate the best-fit linear equation through the data points,
and a linear equation is used represent the measured calibration data.  This
completes the calibration process.  Additional information on the beach profile
indicator can be obtained in Delft Hydraulics (1998).

To ensure consistency from one experiment to the next, and that the sensor
has not �drifted� since the previous survey, the calibration of the profile indicator
is verified prior to and immediately after each bathymetric survey.  Experience
has shown that the profile indicator may drift electronically by as much as
+2 mm between two consecutive surveys, generally representing a time period of
24 to 72 hr. This drift offset is removed numerically when the wheel of the
profile indicator is resting on the benchmark.  The Converters panel in the MTS
control software is opened and the analog channel associated with the profile
indicator is selected in a similar manner as was shown for the ADVs in
Figure 45.  The value of the offset is adjusted slightly until the voltage output
with the wheel on the benchmark is identical to the voltage output obtained
during the calibration process with the wheel on the benchmark.  After this is
completed, the user can begin conducting the bathymetric survey.
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Figure 50. Calibration panel in the MTS control software for the beach profile
indicator (Permission to reprint granted by MTS Systems Corp.)

Measurement of beach profiles

The PV-12 Profiler Operation panel, shown in Figure 51, can be accessed
under the Operation menu of the MTS control software.  This panel is used to
define the longshore location, as well as the onshore and offshore ends of each
transect.  For the example shown in this figure, 39 transects were measured, one
transect every 0.5 m along the beach.  The system is fully automated and operates
as follows.  First, the MTS control software moves the support platform to locate
the sensor at the offshore x-y position of the first transect.  The system lowers the
sensor to the moveable-bed.  Next, the x-axis drive motor moves the profile
indicator in the shoreward direction at the selected speed of 0.1 m/sec.  The x, y,
and z positions of the sensor are measured every 0.005 m in the cross-shore
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Figure 51. Operation panel in the MTS control software for the fully automated
bathymetric survey system (Permission to reprint granted by MTS
Systems Corp.)

direction as the wheel rolls along the surface of the sand bed.  The servo motor
inside the profile indicator maintains a continuous downward force on the bed
equivalent to a mass of 40 g.  After the sensor reaches the shoreward end of the
transect, the system raises the sensor to the fully retracted position, which
completes one transect.  This process is repeated for each transect selected in the
PV-12 Profiler Operation panel.  During the survey process, the x, y, and z
positions of the sensor are displayed real-time in the lower left corner of the PV-
12 Profiler Operation panel.

Because the moveable-bed beach is 30 m long, it requires approximately 60
transects to complete a bathymetric survey, with one transect every 0.5 m along
the beach.  Therefore, three PV-12 Profiler Operation panels are normally used
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for a complete bathymetric survey.  The setup parameters for each panel are
saved in three different �settings.set� files and are usually named �Setting_
downdrift.set,� �Settings_middle.set,� and �Settings_updrift.set.�  The updrift
and downdrift configuration files contain approximately 10 transects in each.

Each transect requires approximately 5 min to complete; therefore, a total
bathymetric survey consisting of 60 transects requires approximately 5 hr to
complete.  The operator only needs to be involved in this process at the
beginning and end of each of the three segments of the survey.

The manufacturer�s performance specifications indicate a vertical sensitivity
of +0.2 mm and a linearity of 0.1 percent of full scale.  Although these are
excellent performance characteristics, only the resolution of the potentiometer is
considered, rather than the entire system.  Nonetheless, during preliminary
performance tests conducted with a rigid piece of metal positioned along one of
the profile transects, the profile indicator measured the elevation of the rigid
metal surface within +1 mm of the actual elevation after 10 repetitions.
Therefore, the accuracy and repeatability of the sensor has proven to be excellent
and meets the requirements of the facility.

Analysis of beach profiles

The raw output files containing the measured beach profile data are in ASCII
file format and consist of three columns of data, the x, y, and z values.  The
profile depth is measured every 0.005 m in the cross-shore direction.  The x, y,
and z positions are recorded with an accuracy of 0.001, 0.01, and 0.0001 m,
respectively.  Consecutive beach profiles are listed one below the other.  The data
are clean and need not be filtered or altered in any way.

This large amount of high-resolution bathymetric data can be analyzed using
various qualitative and quantitative techniques.  The standard analysis for each
test segment consists of two types of qualitative analysis.  First, a 2-D contour
plot is generated using surface mapping software to visualize the uniformity of
the bathymetry.  These contour plots provide considerable qualitative information
and are used, in part, to determine whether or not the magnitude of the erosion at
the updrift end of the beach is sufficient to dictate dredging of the sediment traps.
Secondly, a contour plot of the difference between the posttest and pretest
bathymetry gives insight in regard to the degree of erosion and accretion in
various regions of the beach.

Two types of quantitative analysis are also conducted after each test segment.
First, each of the measured beach profiles from the posttest survey is
superimposed onto the corresponding beach profiles from the pretest survey.
These plots are used to quantify various changes in the beach profile, such as the
location of the still water shoreline and the maximum depth of erosion or
accretion.  Secondly, the net volumetric change along each beach profile is
calculated assuming that each profile is representative of a 0.5 m wide slice of
beach which runs along the beach profile (i.e., 0.25 m on each side of the profile
line).  The net volumetric change within the spatial domain of each slice is
plotted as a function of longshore position.  This type of analysis is very useful in
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quantifying the longshore uniformity of the net volumetric change along the
beach.  More specifically, it also is helpful in quantifying the degree of erosion at
the updrift end of the beach, as well as the rate of growth of the submerged shoal,
which tends to form immediately updrift of the downdrift wave guide.

Examples of these types of analysis will be discussed in detail in Chapter 10.
These examples are based on the results from two sets of moveable-bed
experiments, one with wave conditions characterized by spilling waves and the
other for plunging waves.

Sediment Trap Data
The design of the sediment trapping system was discussed previously in

Chapter 4.  This section will discuss additional information related to calibration
of the load cells, the methodology used to obtain an accurate measurement of the
weight of sand in each trap, and the data analysis procedures used after a test
segment is complete.  As mentioned previously in Chapter 4, the term
�submerged weight� will be used rather than �mass,� because submerged weight
the quantity measured by the traps.

Calibration of load cells

Each of the 60 load cells that support the 20 sediment traps consist of high
accuracy, shear beams constructed inside of a stainless steel, air-tight, and splash-
proof enclosure.  The manufacturer�s performance specifications indicate a
maximum combined error of +0.05 percent of the rated capacity of the load cells,
considering the combined effect of linearity, repeatability, and hysteresis.
Therefore, the maximum combined error for the 250-, 500-, and 1,000-kg load
cells is 0.125, 0.25 and 0.5 kg, respectively.  The linear calibration equations
were verified in the electronics laboratory prior to installation, and the 60 load
cells met the manufacturer�s performance specifications.  Therefore, the linear
calibration equations supplied by the manufacturer were initially used.

These specifications, however, do not consider the effect of seasonal
temperature fluctuations, which can vary by as much as 40 ºC in the Vicksburg,
MS, area.  The manufacturer�s specifications indicate a variability of +0.007
percent of the rated capacity of each load cell, per degree centigrade change in
ambient temperature.   Assuming a 40-ºC change in ambient temperature, the
temperature induced variability for the 250-, 500-, and 1,000-kg load cells is 0.7,
1.4, and 2.8 kg, respectively.  This temperature induced potential error is 5.6
times larger than the errors associated with linearity, repeatability, and hysteresis.

To minimize the errors induced by seasonal temperature fluctuations, and
therefore improve the overall accuracy of the sediment trapping system, the data
acquisition system was designed so that a �shunt cal� procedure can be
performed on the 60 load cells at the beginning of each experiment.  The
procedure works by electronically applying a known resistance to the 60 load
cells.  This additional resistance increases the output voltage from each load cell
by approximately one-half of the total voltage range (or rated capacity) of each
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load cell.  This increase in output voltage (i.e., electronically induced increase in
weight) was accurately measured in the electronics laboratory prior to installing
the load cells in the sediment trapping system.  During the �shunt cal� procedure
(prior to an experiment) the �gain� of the linear calibration equation is adjusted
so that the increase in output voltage exactly matches the increase in voltage that
was measured prior to installation.  In other words, the �gain� in the calibration
equation is slightly adjusted to compensate for the effect of a change in
temperature on the load cells, cabling, and other components.  This procedure has
been automated and can be conducted in approximately 10 min at the beginning
of each experiment.  From theoretical considerations alone, this procedure only
needs to be performed when the ambient temperature has changed significantly
since the last �shunt cal� was conducted.  However, it is prudent to perform this
procedure at the beginning of each experiment, because it provides a means of
verifying that all 60 load cells are functioning properly.

Furthermore, the �shunt cal� procedure is only performed after the sediment
traps have been dredged and the 20 traps are essentially empty of sand.  This is
necessary because the calibration file associated with the �shunt cal� procedure
adjusts the offset of each calibration equation so that each trap weighs 0.0 kg
after the procedure is complete.  If the traps each contain a considerable amount
of sand, it is necessary for the operator to input the most recently measured
weight on each load cell (i.e., measured at the end of the last test segment).  This
process is somewhat tedious, because 60 values must be transferred from the
most recently measured data file to the calibration file.  Therefore, the standard
procedure is to conduct a �shunt cal� only after the traps have been dredged.

Measurement of sediment trap data

The physical process of sand accumulating in the sediment traps is a
relatively slow process.  A typical test segment lasts from 1 to 3 hr of continuous
wave forcing and current recirculation.  During the design process for the
sediment traps, the following tentative assumptions were made.  The first
assumption is that during later stages of an experiment, after the beach profile has
approached an equilibrium shape, the rate of accumulation of sand in a given trap
is relatively constant (i.e., increase linearly) throughout a test segment.  The
second assumption is that during the early stages of an experiment, as the beach
profile is adjusting more rapidly, the rate of accumulation in a given trap may not
increase with a linear trend during the test segment.  Therefore, the data
acquisition system for the sediment traps was designed with sufficient capacity to
sample the 60 load cells at a frequency of 20 Hz.  This rate should provide the
capability to quantify the change in sediment transport rate during the early
stages of an experiment.  In addition, a data acquisition system with this capacity
has the possibility to quantify the change in sediment transport rate associated
with, for example, a large group of waves in an irregular wave spectrum.

Based on these tentative assumptions, the following measurement
methodology is used during a typical experiment.  First, all 60 load cells are
sampled continuously throughout the entire duration of the test segment.
Normally, sand trap data collection begins approximately 1 min prior to wave
generation and ends approximately 1 min after the wave generators are stopped.



Chapter 8     Sensor Calibration, Measurement, and Data Analysis 95

Even though the 60 load cells could be sampled at a frequency of up to 20 Hz, a
sampling frequency of 4 Hz has proven to be sufficient for irregular waves with a
peak period of 2.5 sec.  This provides 10 data points per wave cycle at the peak
frequency.

Two smaller data sets also are collected during a typical experiment.  The
first is collected prior to starting wave generators and vertical turbine pumps at
the beginning of the test segment.  For this data set, the 60 load cells are sampled
at a frequency of 1 Hz for a duration of 100 sec.  Another data set is collected in
the same manner immediately after the test segment, when the waves and
currents have been stopped and the water in the basin has become relatively
calm.  These two data sets are used to quantify the initial and final submerged
weight of sand in each trap.

There are three issues that complicate the task of collecting high quality LST
data.  The first is the accumulation of air pockets beneath the traps and the
neoprene rubber seals.  This occurs as the facility is being filled with water, prior
to an experiment.  However, a simple method was developed to remove these air
bubbles from beneath the traps and the neoprene rubber seals, as discussed
previously in Chapter 4.

The second issue is related to the observation that some of the sand that is
transported into each flow channel accumulates on top of the neoprene rubber
seals around the perimeter of the traps.  In other words, a portion of the
submerged weight of this sand is supported by the walls of the flow channels
rather than by the load cells which support the sediment traps.  This problem is
greatest at the upstream end of the traps, because a significant amount of sand
accumulates in that area.  To solve this problem, an additional task has been
added to the standard operating procedure used to conduct each experiment.  The
results from a previous LST experiment will be used to illustrate this procedure.
In Figure 52, the �PreTest Weight� data are not equal to zero because the traps
had not been dredged prior to this test segment.  After the test segment was
completed, the submerged weight of sand in each trap was measured for 100 sec
at a frequency of 1Hz, as indicated by the �PostTest Weight� data set in the
figure.  A water hose is used to wash the sand off the rubber seals and into the
traps.  This task is carried out in two steps.  First, the sand that has accumulated
on the rubber seals along both sides of the traps is washed into the traps.  Then
the submerged weight of sand in each trap is measured for the third time, for
100 sec at 1 Hz and is referred to as the �Side Rubber Cleaned� data set.  Next,
the sand that has accumulated on the rubber seal at the updrift end of the traps is
washed into the traps.  Finally, the submerged weight of sand in each trap is
measured for the fourth time, for 100 sec at 1 Hz and is indicated by the �All
Rubber Cleaned� data set.  This data set represents the true submerged weight in
each trap.  For this particular test segment, an average of 3.3 and 7.7 percent of
the true submerged weight of sand measured in each trap had initially
accumulated on the side rubber seals and the updrift rubber seal, respectively.
Therefore, a total of 10 percent of the sand had initially accumulated on the
rubber seals, which is an average value for the 20 traps.  Although this process
typically takes 2 hr to complete, it is a crucial step in the process to obtain high
quality sediment transport data sets.
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Figure 52. Average sediment trap weights for Test1H_Case2, showing the
amount of sand that had accumulated on the neoprene rubber seals

The third issue related to measuring high quality LST data is the observation
that, in some cases, a very small amount of sand tends to by-pass some of the
sediment traps, even though Sediment Trap No. 1 to 17 and 19 are 6.0 m in
length.  This was a concern during the design phase, and every feasible step was
taken to maximize the length of the traps.  Most importantly, the beach was
constructed as far upstream as possible to maximize the length of the downstream
flow channels and sediment traps in an effort to provide sufficient time for the
suspended sediment to fall out of suspension.  Nonetheless, for wave conditions
that generate a strong longshore current magnitude near the peak of the
distribution, small amounts of sand tend to bypass the traps where the longshore
current magnitude is strongest.  It should be mentioned that sand bypassing is not
a problem where the longshore current magnitude is weaker, for example, farther
offshore near the tail of the longshore current distribution.  To quantify the
magnitude of this problem, several streamer traps (similar to those used by Rosati
and Kraus 1989) were installed above the downstream end of the traps during
several test segments.  The objectives were to quantify the vertical distribution of
sediment flux and to integrate this distribution across the 0.75-m width of the
flow channel to estimate the total sediment flux past the trap.  After collecting
data during several test segments, results showed that the maximum quantity of
sand bypassing the traps was 1.5 percent of the quantity collected in the sediment
trap, which only occurred in the three flow channels with the strongest longshore
current magnitude.  Because it would be very time consuming to perform these
measurements during every experiment, the decision was made to accept this as a
potential error in the sediment trap data sets.  It should be mentioned that this
only occurs near the peak of the longshore current distribution and for
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experiments conducted with relatively energetic wave conditions.  For all other
cases, the quantity of sand bypassing is negligible.

Analysis of sediment trap data

The cross-shore distribution of the longshore sediment transport rate
measured with the sediment trapping system is calculated by subtracting the
�PreTest Weight� data from the �All Rubber Cleaned� data (Figure 52), and
dividing by the duration of the test segment.  The duration of Test1H_Case2 was
3.33 hr, and results from this calculation are shown in Figure 53.  The cross-
shore location of the center line of each sediment trap is plotted along the x-axis,
as tabulated in Table 2.  Recall that there are no sediment traps located in Flow
Channels No. 18 and 20 (i.e., at cross-shore locations 16.125 and 17.625 m).  The
sand that accumulated in these two flow channels can be visually inspected after
the facility is drained.  For this test segment, the amount of sand in Flow Channel
No. 20 was negligible.  This will be the case for most of the experiments
conducted in the facility, except for those conducted with very energetic wave
conditions.  However, there was a small amount of sand in Flow Channel No. 18.
This quantity was estimated using linear interpolation between the LST rates
measured in Sediment Traps No. 17 and 19.  Integrating across-shore gives a
total measured LST rate of 314.9 kg/hour during this test segment, which
includes the estimated rate of 3.4 kg/hour in Flow Channel No. 18.

Figure 53. Cross-shore distribution of longshore sediment transport measured
during the 3.33-hr duration of test segment Test1H_Case2

One of the objectives of the experiments was to attempt to quantify the
change in LST rate during a group of large waves in an irregular wave spectrum.
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Figure 54 shows the instantaneous submerged weights measured with Sediment
Trap No. 2 during the first 2 hr of test segment Test1H_Case2, which had a total
duration of 3.33 hr.  Because of a brief delay at the beginning of this test
segment, the load cells were sampled for several minutes prior to starting the
wave generators.  The instantaneous submerged weight measurements contain
considerable fluctuation as a result of the vibrations of the sediment traps caused
by wave and current forcing.  The fluctuations tend to be greatest on the
downdrift load cell, where the trap is supported midway across the end of the
trap, rather than at both downdrift corners; as is the case for the updrift end of the
trap.  The reason for this design was discussed previously in Chapter 4.  The
summation of the three time series also is shown, which represents the total
submerged weight of sand in Sediment Trap No. 2.   Although the overall trend
in the data can be accurately quantified, identification of the influence of large
individual waves or groups of waves is not possible because of the noise level in
the measured time series.

Figure 54. Instantaneous submerged weight of Sediment Trap No. 2 during the
first 2 hr of test segment Test1H_Case2

There is one other potential error that must be addressed to obtain high-
quality longshore sediment transport data sets.  During some experiments, a low
profile submerged shoal tends to accumulate immediately upstream of the
downstream wave guide.  This is attributed to imperfections in the downstream
lateral boundary, which are essentially unavoidable when conducting moveable-
bed experiments in the laboratory.  More specifically, the cause of this shoal
formation is attributed to a decrease in wave energy immediately upstream of the
downstream wave guide, resulting from a loss of wave energy under the wave
guide.  This localized wave height gradient causes a small portion of the
suspended sediment to fall out of suspension and slowly accumulate in the form
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of a submerged shoal.  The amount of sand that accumulates in this submerged
shoal (during the test segment) is quantified volumetrically using the bathymetric
data measured immediately prior to and after each test segment.  The shoal
volume is separated into 0.75-m-wide slices running alongshore, and the quantity
of sand in each slice is added to the sediment trap immediately downstream of
each slice.  The method used calculate the quantities will be discussed in detail in
Chapter 10.

Water Level Control
Measuring the still-water level in a laboratory facility is relatively simple,

because it can be measured when the fluid is at rest and the water surface is
stationary.  However, future experiments in the LSTF may involve the simulation
of tidal fluctuations, which complicates this measurement.  Tides would require
simulation with a system to control the inflow and outflow of water.
Sophisticated systems have been developed whereby the rate of water level
change in the model is controlled by an automated system that relies on feedback
from the water level gauge (Hughes 1993).  Although a system to simulate tides
does not presently exist in the LSTF, a water level control gauge was built to
make this possible in the future.

Because of the long-term nature of conducting sediment transport
experiments in a large-scale laboratory facility, it is important to maintain a
known water level during several months (or possibly a few years) of laboratory
studies.  For example, unknown variations in the still-water level can cause
undesirable variations in the offshore wave height from one experiment to the
next.  Therefore, a simple but robust system was constructed to provide an
accurate and consistent method of measuring the still-water level in the facility
over long periods of time.

A custom designed graduated glass cylinder was built for the LSTF and was
mounted inside of a protective support frame on the outside of the exterior wall
of the facility.  The graduated cylinder has an inside diameter of 0.1 m.  A
polyurethane tube, with an inside diameter of 0.003 m, connects the graduated
cylinder to the reservoir of water in the facility.  Therefore, the surface area of
the water in the graduated cylinder is three orders of magnitude larger than the
cross-sectional area of the inflow/outflow tube.  This was done to essentially
eliminate water surface elevation fluctuations while waves are generated.
Therefore, the graduated cylinder would be ideal for measuring the mean water
level in the facility if tides are simulated in the future.  The zero reading on the
graduated cylinder was set at the average elevation of the concrete floor in the
facility in the region where waves are generated.  By considering the meniscus of
the water surface on the inside face of the graduated cylinder, the water level in
the facility can be maintained within + 1 mm of the desired water level.

Summary
The LSTF is a high-quality laboratory facility that has been designed with

the capability to measure wave, current, sediment concentration, bathymetric,
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and longshore sediment transport data.  The longshore sediment transport data
measured with the sediment trapping system is unique in that there are a total of
20 data points that accurately define the cross-shore distribution.  Furthermore,
each of these 20 data points can be correlated with the wave height dissipation,
vertical longshore current profile, vertical sediment concentration profile, and the
local water depth measured at each of these cross-shore locations.  These five
high-quality data sets provide a tremendous amount of information in regard to
the hydrodynamic and sediment transport processes that are generated by forcing
from incident waves.  The procedures discussed in this chapter have been tested
and improved upon over time and have proven to be efficient methods of
obtaining high-quality data sets in the LSTF.
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9 Establishing Uniform
Longshore Currents

Introduction
Successful execution of sediment transport experiments requires a method

for establishing the proper longshore current for a given incident wave condition.
The term �proper� longshore current is used to describe the longshore current
that is generated along an infinitely long beach having a cross section and an
incident wave forcing that are invariant in the longshore direction.  As discussed
in Chapter 3, an active pumping and recirculation system was developed for the
LSTF to establish the proper longshore current.

The external recirculation system and procedures for operating it should
maximize the length of beach for which waves, currents, sediment transport, and
beach morphology are nearly uniform in the alongshore direction.  Longshore
uniformity is important both in regions where wave, current, and sediment
concentration data are collected, and at the downdrift boundary of the beach
where the sediment traps are located.  Creating the proper longshore current with
a high degree of longshore uniformity is difficult to achieve.  The capability of
the LSTF recirculation system to meet these objectives is the subject of this
chapter.  Two comprehensive series of longshore current experiments were
performed on the fixed concrete beach to facilitate evaluation of the system.  The
experiments were conducted as a precursor to a more complex series of
moveable-bed longshore sediment transport experiments.  The majority of the
material discussed in this chapter was published by Hamilton and Ebersole
(2001).

Experiment Program
A number of preliminary experiments were conducted to investigate:

(a) long-term oscillations in pump discharge rates (found to be negligible);
(b) flow patterns created by pumping only (i.e., no wave forcing); (c) flow
patterns with waves only (i.e., no external current recirculation); and (d) the time
required for mean velocities in the wave basin to reach steady state.

After these preliminary experiments were completed, two comprehensive test
series were conducted, one using regular waves and the other using irregular
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waves.  Figure 55 is a photograph of the LSTF taken during a regular wave
experiment.  A total of 20 experiments were conducted, each with a different
magnitude and cross-shore distribution of pumped flow rate.  Fifteen regular
wave experiments were conducted in the process of determining the proper
magnitude and cross-shore distribution of the longshore current and were
identified as Test 2 (waves only) and Tests 6A-6N (waves and currents).  Five
irregular wave experiments were conducted and identified as Tests 8A-8E.

Figure 55. Oblique view of the Large-scale Sediment Transport Facility (regular
wave experiment). A model operator standing in the upper left corner
indicates the physical size of the facility

The incident wave conditions adopted for Tests 6A-N and Tests 8A-E are
given in Table 4, where T is wave period (peak spectral wave period, Tp, for
irregular wave case), H is wave height (energy-based significant wave height,
Hmo, for irregular wave case), λ is wave length, d is still-water depth, θ is the
angle of incidence relative to shore normal, and the subscripts �0� and �1� refer
to values in deep water and at the wave generators, respectively.  Deepwater
values were calculated using linear wave theory.  For the irregular wave tests,
Hmo was selected so that the root-mean-square wave height, Hrms, was
comparable to the average wave height, Havg, for the regular wave case.
Therefore, the total incident wave energy used for both regular and irregular
waves was similar.  For the irregular wave tests, a TMA spectrum was used to
define the spectral shape.  The spectral width parameter was 3.3, a value
representing typical wind sea conditions.  A random phase method was used to
synthesize the pseudo-random wave train used to drive the wave generators.  The
length of the drive signal was 500 sec, duration of 200 times the peak wave
period (2.5 sec).  The still-water depth at the wave generators was constant at
0.667 m during all fixed-bed experiments.
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Table 4
Summary of Incident Wave Conditions
Test Wave

Type
T
sec

H1

m
H1/λ1 d1

m
Θ1

deg
H0

m
H0/λ0 Θ0

deg
Test 6A-N Regular 2.5 0.182 0.031 0.667 10.0 0.189 0.019 16.6
Test 8A-E Irregular 2.5 0.225 0.038 0.667 10.0 0.233 0.024 16.6

Measurement Methodology

The instrumentation bridge was used to position the wave and current sensors
at various positions along the beach.  Transect locations were selected every
4.0 m, from y=15.0 to y=39.0 m, as shown in Figure 56.  Transects are identified
as Y15, Y19, Y23, Y27, Y31, Y35, and Y39, according to their longshore
coordinate.  During each experiment, measurements were taken along at least
three primary transects to represent general hydrodynamic conditions along the
beach: Y19 (center of the downstream half of the beach), Y27 (center of the
entire beach), and Y35 (center of the upstream half of the beach).  During Test
6N and Test 8E, and several others, measurements were made at all seven
transects.

Figure 56. Plan view of the LSTF and a conceptual diagram of the longshore flow conditions

Wave setup and setdown were obtained by using the wave gauges to measure
the still-water level elevation prior to each experiment and then subtracting that
elevation from the mean water surface elevation measured during the experiment.
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The ADVs were positioned at elevations approximately one-third of the water
depth above the bed.

At the beginning of each experiment, the instrumentation bridge was
positioned at Y27, and the elevation of the still-water level was measured with
the 14 wave gauges.  The pumps were started and set to prescribed discharges to
create the desired longshore current distribution.  Data collected with the in-line
flow sensors (one in each of the 20 pump-and-piping systems) were analyzed to
ensure the pumps were operating at the proper flow rates.  The wave generators
were started and waves were generated continuously throughout the experiment.
After 10 min of wave generation (20 min after the pumps were started), data
were collected at the Y27 transect.  All sensors were sampled at 20 Hz for 500
sec during both the regular and irregular wave test series.  The process of
repositioning the instrumentation bridge and acquiring 500 sec of data was
repeated at transects Y15, Y19, Y23, Y27, Y31, Y35, and Y39.  After the last
transect was completed at Y39, a third set of data was acquired at Y27.  Multiple
measurements at transect Y27 were collected to assess repeatability of the
measurements and the steadiness of the hydrodynamic conditions.

The time series were visually inspected during experiments to assess data
quality.  In very shallow water, air bubbles from breaking waves penetrated into
the water column, to the depth of the ADV 1 and 2 sensors, causing undesirable
spikes in the velocity time series.  These spikes were removed during post-
processing with a filtering routine developed and discussed in Chapter 8.  The
ADV measurements further offshore did not need to be filtered.

Detailed dye measurements were performed during each experiment to
inspect patterns in the flow streamlines by injecting the dye into the water at
discrete points.  Dye observations focused on: (a) uniformity of flow streamlines
along the beach; (b) streamline patterns of flow exiting the upstream flow
channels and approaching the downstream flow channels; and (c) streamlines in
the offshore region of the basin where internal recirculation occurred.  Dye also
was used to obtain qualitative information on the longshore current in very
shallow water, shoreward of ADV 1.

Procedure for Tuning the Longshore Current
This section contains three subsections.  The first describes the iterative

process that was used to establish the proper magnitude and cross-shore
distribution of the longshore current along the beach by adjusting the pump
settings for the external recirculation system.  To verify these results, the two
subsequent subsections describe two criteria proposed by Visser to confirm that
the proper total longshore flow rate was recirculated.  However, these two criteria
consider only the magnitude of the total longshore flow rate.  They do not help
determine the proper cross-shore distribution of the longshore current that should
be recirculated.

Figure 56 conceptually illustrates the flow conditions in the LSTF during the
experiments.  The quantity Qs is the total longshore flow rate in the surf zone
between the wave setup limit and the point of transition where the mean
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longshore current reverses direction; Qp is the total longshore flow rate actively
pumped through the external recirculation system; Qr is the total longshore flow
rate that internally recirculates in the offshore region; and Qc is a secondary
offshore circulation cell limited to the length of each wave board between two
adjacent baffles.  In this facility, Qc develops as a result of the baffles that extend
shoreward of the wave boards.  In general, it was found that Qc decreases as Qr
decreases, because Qr drives Qc.  At a transect midway along the beach, and
assuming no temporal change in mean water level within the wave basin,

Qs = Qp + Qr (1)

Iterative examination of the longshore current distribution

Pump settings were systematically adjusted in an effort to establish the
proper mean longshore current distribution in the surf zone for a given wave
condition.  As the series of experiments progressed, new estimates of the proper
longshore current distribution were made based on previously measured
distributions along the beach.  The following hypotheses were used to guide the
tuning process: (a) the degree of uniformity of longshore current in the surf zone
should increase as the proper longshore current distribution is approached; (b) the
magnitude of internal recirculation, Qr, should decrease as the proper longshore
current distribution is approached; (c) there is a point where Qr is minimized; and
(d) internal recirculation can not be completely eliminated because of
imperfections of the lateral boundaries.

The first regular wave experiment, Test 2, was conducted with no pumping
(Qp = 0 ℓ/sec).  This test was conducted to investigate the case when Qr had the
largest magnitude and to examine the signs of under-pumping.  This test is
equivalent to the recirculation scheme used by Putnam, Munk, Traylor (1949),
and discussed by Visser (1991) and Hamilton et al. (1997).  As expected, results
from Test 2 showed very nonuniform conditions both in the magnitude and
distribution of longshore current measured at Y19, Y27, and Y35.

A total of 14 regular wave experiments were conducted with Qp > 0 ℓ/sec.
An initial estimate of the proper longshore current distribution was made using
the numerical model NMLONG (Kraus and Larson 1991).  The breaking wave
height-to-depth ratio, used as a calibration parameter in the numerical model, was
adjusted based on wave height measurements in the fixed-bed experiments.

Figure 57 shows pump settings for 7 of the 14 experiments, including the
proper distribution, Test 6N, for comparison.  Pump settings are shown in terms
of the depth-averaged longshore current pumped through the lateral boundaries
of the facility.  As illustrated, the proper longshore current distribution was
achieved by under-pumping across the entire surf zone and gradually increasing
the pumped flow rate through the lateral boundaries.
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Figure 57. Progression of pump settings for regular wave experiments

Results from Test 6D, an under-pumped case that was the fifth experiment in
the series, are shown in Figure 58.  The peak longshore current measured at each
of the three transects was much higher than the peak current pumped through the
lateral boundaries.  Offshore recirculation was diminished substantially in both
extent and magnitude compared to the no-pumping case; however, recirculation
remained rather strong at Y27.  The longshore current distribution at Y35 showed
a region of flow reversal near the shoreline (negative values).  This phenomenon
was observed during the 15 experiments and was limited within a region
extending from the upstream boundary to Y=34 m and 2 m offshore from the
still-water shoreline.  This region of flow reversal decreased significantly in
magnitude and spatial extent as the proper distribution was approached with
subsequent pump settings, but it was never completely eliminated.

It appeared that the proper longshore current distribution was being
approached at the peak and shoreward of the peak during the tenth experiment
(Test 6I).  However, there was concern that the offshore tail of the distribution
was over-pumped.  To investigate the ramifications and signs of over-pumping,
Test 6J was performed.  Figure 57 shows the longshore current distribution that
was recirculated in Test 6J, relative to other tests, and Figure 59 shows longshore
current results from the test.  In the surf zone, the measured current distribution
matched the pump settings quite well.  In this region, it would be difficult to
discern whether or not the lateral boundaries were over-pumped.  However, the
over-pumped case (Test 6J) produced substantially more recirculation in the
offshore region, relative to Test 6I.  The results from this experiment indicated
that there are signs of over pumping, but the results are subtle and not obvious
over much of the longshore current distribution, except in the offshore tail.
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Figure 58. Test 6D � under-pumping: Measured longshore current distirbution at
Y � 19, 27, and 35 m

Figure 59. Test 6J � over-pumping: Measured longshore current distribution at
Y = 19, 27, and 35 m
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The last few experiments (6K through 6N) focused in more detail on the
offshore tail of the distribution, which proved to be more difficult to tune.
Figure 60 shows the results from Test 6N, the fifteenth and final iteration.  Peak
currents at the three primary transects were relatively uniform, and the degree of
uniformity along much of the beach increased noticeably.  In the offshore tail,
agreement between pump settings and measurements was the best observed in
any prior experiment.  Current measurements in the offshore tail always were
slightly greater than the pump settings, because of the internal recirculation.  The
magnitude and extent of the small flow reversal region near the shoreline at the
upstream end of the beach was significantly less, and the longshore current
measured closest to the shoreline at Y35 was now directed downstream (positive
values).  However, the flow reversal near the shoreline was still present farther
upstream.  The flow reversal appeared to cause the higher current magnitude
measured immediately offshore of the peak at Y35.  The internal recirculation, Qr
was the lowest that had been observed during all previous tests, based on the
measurements at the ADV furthest offshore.  Therefore, it was concluded that the
pump settings used during Test 6N were the proper settings, and they produced
the highest degree of uniformity of longshore currents in the surf zone.
Additional measurements were made offshore at the Y27 transect to more
accurately quantify the magnitude of the internal recirculation in the offshore
region.  They are discussed in more detail in the next subsection.

Figure 60. Test 6N � proper pumping: Measured longshore current distribution at
Y = 19, 27, and 35 m

The same iterative process used for the regular wave case was repeated for
the irregular wave case.  The final longshore current distribution was achieved in
Test 8E, after five iterations.  A more complete set of results that illustrates the
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degree of longshore uniformity that was achieved, are presented and discussed in
a subsequent section and provided in tabular form in Appendix A.

Verification using minimum Qr concept

The values of Qp used during Test 6N and Test 8E, assumed to be the
optimum values, were verified using the two criteria proposed by Visser (1991).
As mentioned previously, these two criteria consider only the total longshore
flow rate being recirculated, Qp, not the cross-shore distribution (i.e., not the 20
individual pump flow rates).

In the present experiments, Qr, which is influenced by Qc (Figure 56), was
estimated directly during Tests 6N and Test 8E, by making additional
measurements in the offshore region at transect Y27.  For all other experiments
in the Test 6 and Test 8 series, Qr was estimated indirectly assuming Qr = Qs - Qp
(Equation 1).  Quantifying the magnitude of Qc was difficult and could only be
estimated using dye.

As shown in Appendix A, the mean longshore currents were rather invariant
with depth.  Therefore, the flow rate in the surf zone, Qs, could be calculated
using the longshore current measured one-third of the water depth above the
bottom, the local mean water surface elevation, and an estimate of the cross-
sectional area represented by each ADV.  The pumped flow rate, Qp, was
calculated using data from the in-line flow sensors in each pump-and-piping
system.

The first criterion proposed by Visser (1991) will be illustrated conceptually,
using the Qs and Qr values obtained during the 15 regular wave experiments
(Figure 61).  Qpu is the value of Qp associated with the proper and nearly uniform
longshore flow rate in the surf zone, Qsu.  This method is based on the premise
that Qpu can be determined by minimizing Qr as a function of Qp.  Visser (1991)
postulated the following: (a) if Qp<Qpu, the flow rate Qs will increase in the
downstream direction and the surplus, Qs-Qp, will return offshore and increase
Qr; or (b) if Qp>Qpu, the increased flow rate Qs will increase Qr offshore because
of the increased advection and lateral friction.

Although there is some scatter in the data, Test 6N had the lowest value of
Qr.  For Test 6N, Qs and Qp were 505 and 465 ℓ/sec, respectively.  Hence Qr is
indirectly estimated to be 40 ℓ/sec.  Based on ADV measurements, the internal
recirculation flowing in the upstream direction, Qr+Qc, was calculated to be
48 ℓ/sec.  The secondary circulation cell, Qc, flowing downstream directly in
front of each wave generator was estimated to be 10 ℓ/sec, using dye.  Therefore,
the inferred value of Qr was 38 ℓ/sec.  Hence, direct measurement of the internal
recirculation, Qr, and the indirect estimate, Qs-Qp, gave good agreement.  The
ability to minimize internal recirculation relative to the flow rate in the surf zone,
can be quantified as (Qs-Qp)/Qs, which for this test was approximately 8 percent.
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Figure 61. Surf zone and internal recirculation flow rates at Y27 for 15 regular
wave experiments

Values of Qs and Qr for the five irregular wave experiments are shown in
Figure 62.  The slight upward curvature in the Qr curve is evidence that Qp had
been increased sufficiently to reach the minimum value of Qr, perhaps even
slightly exceeding the proper flow rate, Qpu, in Test 8E (the largest value of Qp).
However, evidence provided in the next section suggests that Qp may have been
slightly less than Qpu.  For Test 8E, Qs and Qp were calculated to be 545 and
478 ℓ/sec, respectively.  Hence Qr is indirectly estimated to be 67 ℓ/sec.  Based
on ADV measurements, Qr+Qc was calculated to be 135 ℓ/sec.  Based on dye
measurements, Qc was estimated to be 60 to 70 ℓ/sec, flowing downstream
directly in front of each wave generator.  Therefore, the inferred value of Qr was
65 to 75 ℓ/sec, and the value of Qr and Qc are comparable.  Hence, both the direct
and indirect measurements of the internal recirculation, Qr, were in relatively
good agreement.  For Test 8E the ratio of (Qs-Qp)/Qs was approximately
12 percent.  More internal recirculation was generated in the irregular wave case
because 2 to 3 percent of the waves broke slightly offshore of x=18 m, the
offshore limit of the external recirculation system.

Results for both the regular and irregular wave test series suggest that the
recirculation criteria proposed by Visser (1991) is valid for the LSTF.  However,
for the LSTF, the gradient in the Qs-Qp curve tends to increase more gradually as
Qp is increased, compared with the results presented by Visser (1991).
Figures 61 and 62 both suggest that Qp could vary by as much as +20 percent,
relative to Qpu, without a significant increase in Qr.
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Figure 62. Surf zone and internal recirculation flow rates at Y27 for five irregular
wave experiments

Verification using gradient in Qs concept

The second method proposed by Visser (1991) is based on the following
hypotheses:  (a) if Qp < Qpu, Qs increases in the downstream direction; (b) if
Qp = Qpu, Qs is essentially uniform in the longshore direction; and (c) if Qp > Qpu,
Qs decreases in the downstream direction.

Figure 63 shows results from 3 of the 15 regular wave experiments.  In Test
6D, Qp was approximately 40 percent less than the value of Qp in Test 6N (the
proper value), and Qs increases in the downstream direction.  Conversely, in Test
6J, Qp was approximately 47 percent greater than Qp in Test 6N, and as shown,
Qs decreases in the downstream direction.  In Test 6N, Qs is essentially uniform
in the alongshore direction.  These results give credence to the conclusion made
previously that Test 6N represents the proper longshore current distribution for
the regular wave case.  However, in the case of under- or over-pumping, the
longshore gradient in Qs is relatively small.  Therefore, significant care should be
taken during the iterative process of selecting and converging on the proper
longshore current distribution.

Results from two of the five irregular wave experiments are shown in
Figure 64.  In Test 8A, Qp was approximately 28 percent less than the value of Qp
in Test 8E, and Qs increases in the downstream direction.  Results for Test 8E
(judged to be the proper value of Qp) show that Qs increases slightly in the
downstream direction, which suggests that Qp may have been slightly smaller
than Qpu.  However, this contradicts evidence shown in Figure 62, which
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Figure 63. Regular wave test series: Longshore variation in surf zone flow rates,
Qs

Figure 64. Irregular wave test series: Longshore variation in surf zone flow rates,
Qs
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suggested that Qp was slightly greater than Qpu.  This slight discrepancy between
the two methods may be caused by the fact that, in the LSTF, Qp can vary by as
much as +20 percent of Qpu without a significant increase in Qr, as mentioned
previously.  Therefore, it was concluded that Qp in Test 8E was essentially the
proper longshore current distribution for the irregular wave test series.  A case
involving significant over-pumping was not conducted for the irregular wave
experiments.

Longshore Uniformity
This section quantifies the length of surf zone with the highest degree of

longshore uniformity of the hydrodynamic processes.  In general, it can be
assumed that longshore uniformity should increase with increasing distance from
the lateral boundaries.  However, from the perspective of measuring longshore
sediment transport in the LSTF, it is important to quantify the spatial limits of
this region; especially at the downstream end where sand traps will be located.

Longshore uniformity was quantified by an average value of the standard
deviation at each cross-shore position and at each transect within the length of
surf zone being evaluated.  For both Test 6N and Test 8E, the standard deviation
was calculated independently for the wave height, mean water surface elevation,
and mean longshore current data sets.  A new value of the average standard
deviation was calculated each time the representative beach length was
decreased, by excluding data from one or more transects from the calculation.
Transects at the upstream end of the facility were eliminated first, then transects
at the downstream end were eliminated.  The length of the surf zone with the
highest degree of longshore uniformity is defined as the length at which a
minimum standard deviation is obtained.

Figure 65 shows results for the regular wave experiment.  Longshore
variations in the average wave height measurements tend to decrease only
slightly as the length of beach being considered is decreased.  In contrast,
longshore variations in the mean water surface elevation, and more importantly,
in the mean longshore current, decrease significantly with decreasing length of
testing region and approach a minimum asymptote at approximately 12 m.  If a
shorter length of surf zone is considered, there is no significant increase in
uniformity.  Therefore, it is concluded that the hydrodynamic measurements have
reached a minimum longshore variability if the length of surf zone being
considered is reduced to 12 m, starting at Y19 and extending upstream to Y31.

The high degree of longshore uniformity in this portion of the surf zone is
illustrated in Figure 66, a through c, which show the cross-shore distributions of
measured wave height, mean water surface elevation, and mean longshore
current, respectively, for transects Y19 through Y31.  Figure 66a shows that the
greatest longshore variation in the measured wave height occurred at and
immediately offshore of the incipient breaker line. Wave breaking occurred
immediately shoreward of Wave Gauge 6.  Deviations from the longshore
averaged wave height were as high as +8 percent.  This is a laboratory effect
caused by generating regular waves in a wave basin with reflective boundaries.
However, the longshore variation in wave height measured in front of each of the
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Figure 65. Regular wave Test 6N: Longshore uniformity of hydrodynamics vs
length of surf zone

Figure 66. Longshore uniformity of surf zone
a. Regular wave Test 6N: Cross-shore distribution of wave height
(Part 1 of 3)
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Figure 66. b. Regular wave Test 6N: Cross-shore distribution of mean water
surface elevation (Part 2 of 3)

Figure 66. c. Regular wave Test 6N: Cross-shore distribution of mean longshore
current (Part 3 of 3)
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four generators (x = 18 m), had a standard deviation of only 2.8 percent.  In the
inner surf zone, the longshore uniformity in wave height is very good due to the
dominant effect of depth, which limits wave height.  The longshore averaged
breaker height index, across the width of the surf zone (Wave Gauge 1 through
6), is calculated to be 0.74, and is tabulated in Table A-3, Appendix A, with
several other parameters.  Figure 66b shows that the longshore variation in mean
water surface elevation is approximately +0.0015 m.  This value is comparable to
the elevation tolerance of the bridge support rails.  Therefore, it can be concluded
that there is no measurable longshore gradient in the mean water level in this
region.  Figure 66c shows that the degree of uniformity in the mean longshore
current is quite good.  The reduction in magnitude of the longshore current at x =
4.1 m at transect Y31 is caused by the small flow-reversal region farther
upstream, near the shoreline.  It is interesting to note that just offshore of the
peak longshore current, the measurements suggest a slight flattening of the
longshore current distribution.  This observation is qualitatively consistent with
the present understanding of the interaction of the undertow with the longshore
current; see Putrevu and Svendsen (1992).

Figure 67 quantifies longshore uniformity of the hydrodynamic processes in
the irregular wave experiment.  As was found for the regular wave case, all three
hydrodynamic parameters tend to approach a minimum asymptote, if the length
of the testing region is reduced to approximately 12 m, starting at Y19 and
extending upstream to Y31.  The values of the standard deviation in the irregular
wave experiment are significantly less than in the regular wave experiment,
especially for the wave and current data.  Perhaps the regular wave forcing
generates a basin response that does not occur when using irregular wave forcing.

Figure 68, a through c, illustrates the high degree of longshore hydrodynamic
uniformity for the irregular wave case.  Figure 68a shows that the significant
wave height is very uniform in the alongshore direction.  The significant wave
height at incipient breaking occurred immediately shoreward of Wave Gauge 7,
based on visual observations and the fact that the gradient in the significant wave
height curve increases significantly at that location.  The longshore averaged
breaker height index, across the width of the surf zone (Wave Gauges 1 through
7) is calculated to be 0.75, as tabulated in Table A-3, Appendix A.  The
longshore averaged value of the measured maximum wave height also is shown
to illustrate that Hmax > 0.35 m at x = 18 m.  As was the case for the regular wave
test, Figure 68b shows that the alongshore variation in mean water surface
elevation is approximately +0.0015 m.  The wave setup at x = 4.1 m is only about
60 percent of the value measured in the regular wave case, even though the
incident wave energy was constant by setting Hrms in the irregular wave case
equal to Hreg in the regular wave case.  Figure 68c shows that the mean longshore
current is very uniform in the longshore direction.  The peak current is 0.34 m/s,
relative to a peak current of 0.42 m/s in the regular wave case.  The cross-shore
distribution is broader than in the regular wave case, with the offshore tail
decreasing much more uniformly.  Dye was used to investigate the longshore
current in very shallow water.  No local increase in longshore current was
detected shoreward of ADV 1 for either the regular or irregular wave case.  It is
interesting to note that the total longshore flow rate actively pumped through the
lateral boundaries, Qp is 465 and 478 ℓ/sec for the regular and irregular wave
cases, respectively.  These values are very similar, since the incident wave
energy was held constant for the two cases, as mentioned previously.
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Figure 67. Irregular wave Test 8E: Longshore uniformity of hydrodynamics vs
length of surf zone

Figure 68. High degree of longshore hydrodynamic uniformity for irregular wave
case
a. Irregular wave Test 8E: Cross-shore distribution of wave height
(Part 1 of 3)
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Figure 68. b. Irregular wave Test 8E: Cross-shore distribution of mean water
surface elevation (Part 2 of 3)

Figure 68. c. Irregular wave Test 8E: Cross-shore distribution of mean longshore
current (Part 3 of 3)
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The measured cross-shore distribution of the mean longshore current at
transects Y19 through Y31, and the longshore-averaged values of the mean
longshore current for these four transects, are provided in Appendix A.  The
longshore averaged values of wave height and mean water surface elevation,
from Y19 through Y31, are also provided.

Longshore Current Steadiness and Repeatability
Individual fixed-bed hydrodynamic experiments lasted from 2 to 3 hr,

depending on the number of transects measured.  Moveable-bed longshore
sediment transport experiments also will be conducted continuously for a several-
hour duration, perhaps longer.  Therefore, the issues of current steadiness and
repeatability over this time scale are important.  Experiments were conducted to
investigate the time required for the mean currents in the wave basin to reach
steady-state conditions.  Results from Test 8E, the irregular wave case, are shown
in Figure 69.  The data represent the mean longshore current distribution
measured at transect Y27 at three different times: 20, 110, and 150 min after the
start of the experiment.  Pumps were started at time zero.  Wave generation
commenced at the 10-min mark, after the 20 pumps had been adjusted to within
1 percent of the target discharge rates.  Results showed that mean currents
reached steady state within 10 min of starting the wave generators. The standard
deviation of the mean longshore current, averaged for all cross-shore positions
along Y27, was 0.0022 m/sec and 0.0017 m/sec for Test 8E and Test 6N,
respectively.

Figure 69. Irregular wave Test 8E: Sequential measurements of mean longshore
current at Y = 27 m
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A related issue is measurement repeatability.  Current measurements at Y27
were repeated five times during Test 6N, one immediately after the other, to
quantify the repeatability of the mean longshore current measurements.  Each set
of measurements was sampled for 500 sec.  The standard deviation of the five
mean longshore current measurements, averaged for all cross-shore positions,
was 0.0015 m/sec.  This confirmed that the repeatability of ADV measurements
was quite good.

The steadiness of the current regime and the repeatability of the ADV
measurements allowed the vertical mean current structure to be measured with a
high degree of confidence.  Measurements were made by accurately
repositioning all of the ADV sensors at a new elevation in the water column,
prior to each subsequent set of measurements.  The vertical structure of the mean
longshore current for Test 6N and Test 8E are given in Figures A-1 and A-2,
Appendix A.

Application to Sediment Transport Experiments
As discussed in the previous section, the mean currents in the wave basin

reached steady state within 10 min of starting the wave generators.  In addition,
with experience, approximately five iterations are required to converge on the
proper pump settings.  These are two very positive conclusions with respect to
future sediment transport experiments in the LSTF, because the time will be
minimized during which sediment will be moving in response to improper
longshore currents.

As shown, the high cross-shore resolution of the longshore current
recirculation system in the LSTF allows very accurate control of the longshore
current distribution.  Because the pumps are digitally controlled, and the in-line
flow sensors allow for real-time data collection, it typically only takes 30 to 60
minutes to readjust the pump settings for a new iteration.  Therefore, during the
sediment transport experiments, the pump settings can be easily adjusted in
response to changing beach morphology.

Most of the longshore sediment transport experiments will be conducted
using irregular waves.  For the irregular wave case, the degree of longshore
uniformity in mean longshore current and wave height is quite good downstream
to Y14, the closest transect to the downstream boundary.  As shown in Figure 70,
there were small decreases in longshore current speed near the downstream
boundary, on the order of 10 percent at the peak, relative to the average current
for the 12-m region of the beach with the highest degree of longshore uniformity
(Y19 through Y31).  The reasonably high degree of longshore uniformity at the
downstream end of the beach is a very positive result from the standpoint of
conducting longshore sediment transport experiments in the LSTF, since the sand
traps will be located at the downstream end of the beach.  Nonetheless, some
inefficiency is expected at the sand traps because of the slight reduction in
current magnitude and wave energy at the downstream boundary.
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Figure 70. Irregular wave Test 8E: Distribution of mean longshore current at
downstream boundary
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10 Longshore Sediment
Transport Experiments

Introduction
This chapter discusses the methods and procedures that were used to execute

movable-bed longshore sand transport (LST) experiments.  The objective of the
experiments described here was to accurately measure the total LST rate, and its
cross-shore distribution, on a laboratory beach that is intended to represent an
infinitely long, natural beach having straight and parallel topographic contours,
i.e., water depths are invariant in the alongshore direction.  For these idealized
beach conditions, along with wave and current forcing that has alongshore
uniformity, the LST rate also should be invariant in the alongshore direction.
Longshore uniformity of all processes represents the target conditions that are to
be created in the facility. This chapter presents results from initial experiments
performed in the facility, and provides information on how uniform the
conditions were.

Ideally, the sediment traps situated at the downdrift end of the beach should
be 100 percent efficient, i.e., completely trap the sand that the waves and currents
transport alongshore, no more, no less.  However, the physical boundaries of the
facility, and imperfections in the systems and scheme used to control wave,
current, and sediment transport processes at the lateral boundaries, influence the
degree to which alongshore uniformity can be achieved.  Chapter 9 addressed
how well uniformity was achieved, in terms of hydrodynamics, for a planar
concrete beach with straight and parallel contours.  The situation becomes much
more complex for movable-bed experiments.  With a mobile bed, sand begins to
immediately move in response to waves and currents and the beach topography
begins to evolve.  Imperfections in lateral boundaries are expected to induce
anomalous beach response, loss of complete alongshore uniformity, and a less-
than-perfect trapping system.  The degree of beach uniformity that is achieved in
the alongshore direction, and maintained during the course of experiments,
dictates the success of the experiments. The first few experiments were a learning
process.  During the initial experiments, methods and procedures for conducting
movable bed experiments were developed and refined; and results and lessons-
learned are discussed here.

Results from two experiments are presented in this chapter.  In the first,
predominantly spilling-type breaking waves were produced.  These were created
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by specifying incident irregular waves that had a significant wave height at the
wave generator of 0.25 m (in 0.9 m of water) and a peak spectral wave period of
1.5 sec.   Incident waves for the second experiment were also irregular, but had a
significant wave height of 0.23 m and a peak spectral period of 3.0 sec. These
lower-steepness waves produced predominantly plunging-type wave breaking.
The incident wave direction for both experiments was 10 deg, relative to shore
normal, at the wave generator.  These two wave cases represent the upper
magnitude of incident wave energy, in terms of significant wave heights, for
which LST experiments can be effectively performed in the facility.

Issue of Sand Recharging
As waves and currents begin to transport sand along the beach, a deficit of

sand is created at the updrift boundary if no sand is introduced.  Originally, a
system was envisioned that would actively recirculate sand during an experiment,
and introduce it at the updrift end of the beach in a prescribed cross-shore
distribution that was to be determined from trap measurements made at the
downdrift end.  The system would recirculate a water-sand slurry in the same
manner as the pumps recirculate water (Chapter 3) and continuously discharge it
along the updrift boundary of the beach in a controlled manner.  A sizable effort
was expended on both conceptual and more detailed engineering designs of such
a system.  Both hydraulic and mechanical systems were considered for
introducing sand at the upstream end, and several design concepts for each type
of system were evaluated.  However, in light of uncertainties associated with
each design, it appeared that even though considerable resources could be spent
on a sand-recharging system, performance of the system might not meet
requirements and expectations.

Concurrent with work to design an automated recharge system, preliminary
experiments were conducted with the mobile sand beach.  Results suggested that
alongshore uniformity over the downdrift two-thirds of the beach was reasonably
well maintained during what was anticipated at the time to be a typical
experiment duration for moderate to high LST conditions (1 to 4 hr).  As
anticipated, a beach discontinuity formed at the updrift end of the facility, but the
erosion-induced perturbation did not rapidly propagate down the beach during a
several-hour period, even under rather high longshore transport conditions (some
of the largest that can be produced in the facility).  Perturbations were mostly
confined within a 5-m zone immediately adjacent to the updrift boundary.  The
duration of experiments is also limited by the capacity of the traps (Chapter 4).
The total amount of sand that was transported alongshore during a several-hour-
long experiment for high-transport conditions is generally less than 1 percent of
the 125 m3 of sand that comprises the artificial beach (D50 = 0.15 mm).

After considering a number of factors, including technical difficulty and
inherent limitations, time-to-construct, and monetary constraints, a decision was
made not to proceed with construction of an active sand recharge system.
Instead, a system of dredging and recirculating sand off-line after an experiment
was completed was adopted (Chapter 4).  The system involves use of a trash-
pump to recirculate the sand-water slurry and positioning of the discharge point
to roughly fill in the areas where the sand deficit is greatest.  The purposes of the
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off-line beach replenishment are twofold: recharge the sediment supply at the
updrift end of the beach, and restore the beach to one with straight and parallel
contours.  Following sand recirculation, the wave basin is drained, and remolding
of the beach to the desired shape is accomplished (Chapter 5 for more details).
The middle two-thirds of the beach generally requires little, if any, remolding due
to the alongshore-uniform condition that is maintained in this region.  Typically,
there also are slight perturbations very close to the downdrift boundary, primarily
accretion.  Beach response at the downdrift end is discussed in more detail
further into this chapter.

Procedures for Executing Experiments

Test sequence

For each experiment (an experiment is characterized by use of a single-
incident wave condition), process measurements were made for a series of test
segments, or wave runs.  Each segment lasted from approximately 40 to 200 min
in duration, depending on the quantity of sand that was transported along the
beach.  Shorter-duration tests were adopted for higher, longshore, transport
conditions.  Duration also was dictated by the purpose of the test segment.  Each
segment was designed to focus on one of the following progressive goals, with
the final goal being acquisition of accurate and comprehensive measurements of
the LST rate, and its cross-shore and vertical distribution patterns.  The
progressive goals, listed in sequential order, include:

a. Obtain optimal settings for the pump circulation system, i.e., pump the
proper longshore current, to minimize boundary influences and minimize
recirculation of the longshore current.

b. Allow the beach to reach equilibrium, or near-equilibrium, conditions in
terms of beach profile shape.

c. Provide adequate measurement coverage in the alongshore and cross-
shore directions.

d. Provide adequate measurement coverage throughout the water column.
e. Repeat key measurements to ensure data quality and repeatability.

Each individual test segment followed a set procedure to ensure data
comparability.  The procedure adopted for each test segment was as follows:

a. Conduct a complete pretest beach survey.
b. Perform pretest sediment trap sampling (under quiescent conditions to

�zero� the traps).
c. Check instruments, data acquisition systems, and initialize sensors.
d. Start sampling of sediment trap weight.
e. Start longshore current circulation system (sequential start-up of pumps,

working onshore to offshore).
f. Start wave generators (synchronous start-up of all four).
g. Begin sampling of wave, current, and sediment concentration.
h. Stop the wave generators.
i. Stop the longshore current circulation system.
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j. Perform sampling of final trap weights (under quiescent conditions).
k. Wash sand from the traps� rubber seals into the traps and resample

weights.
l. Conduct a complete posttest beach survey.

Instrumentation and measurement scheme

The LSTF hosts a suite of instrumentation.  Details on the capabilities and
accuracy of the instruments are described in previous chapters (see Chapters 2
and 8).  A brief summary of the instrumentation and sampling scheme specific to
the LST experiments is listed in Table 5.

Table 5
Instrumentation and Sampling Scheme

Parameter to
be Measured

Instrument
Type Sampling Rate

Sampling
Duration

Number
of Cross-
shore
Locations

Vertical
Profile

Waves Capacitance
Wave Sensor 20 Hz 10 min 101 N/A

Current
Acoustic Doppler
Velocimeter
(ADV)

20 Hz 10 min 102 Yes

Sediment
Concentration

Fiber-Optic
Backscatter
(FOBS)

16 Hz 10 min 7 Yes

Water Depth Bottom-tracking
Profiler Every 5 mm Continuous 3,660 N/A

Sediment Flux Bottom
Sediment Traps

Mode 1: 4 Hz
Mode 2: 1 Hz

Continuous
1 min

20
20

No
No

1 The 10 locations were 1.1, 2.7, 4.1, 5.7, 7.1, 8.5, 10.1, 11.6, 13.1, 15.6 m from the shoreline.
2 The ADVs were positioned at the same cross-shore locations as, and synchronized with, the wave
sensors

Sediment flux measurements using the downdrift bottom traps were
conducted in two modes.  Mode 1 consisted of continuous sampling of trap
weight at a high frequency, 4 Hz, during the test segment.  However, accurate
weight measurements during the wave run were not possible due to vibration and
movement of the traps, which were forced by the wave motion.  Measured
weights exhibited considerable �noise,� but increasing trends were identifiable.
Mode 2 trap measurements consisted of two discrete sampling periods, at 1 Hz,
before and after the wave run.  Accurate trap weights were obtained in quiescent
water.

Wave and current measurements were synchronized, allowing computation
of directional wave spectra.  However, estimation of breaking wave angle from
the spectra was difficult, and calculations had a high degree of uncertainty.
Breaker angle also was measured visually using the digital compass in an
electronic total station transit.  About 20 breaker angles were measured during
each test segment.  An overall average for all the test segments for each wave
condition was used to estimate the breaker angle.  Elevations of the FOBS
sensors are referenced to the bottom sensor, which is deployed directly on the
sand bed.  The bottom sensor is identified as the one having saturated signals.
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Complexities of pumping the proper longshore current

The process of determining proper pump settings for movable-bed LST
experiments is much more complex than that for experiments involving a
concrete beach.  In the latter case, the bottom does not respond during the
iterative process in which incorrect pump settings are gradually improved to
converge on the proper settings.  The iterative process on a concrete beach is
much more �forgiving,� unlike that for movable-bed experiments, in which the
bed immediately begins to respond to wave forcing and incorrect pump settings.
The recommended iterative procedure involves approaching the proper settings
from below.  In this situation, the discharge pumped is less than the proper
amount, and return flows tend to transport sand offshore along the downdrift
boundary.  This creates an undesirable beach response that is nonuniform in the
alongshore direction and occurs directly in front of the traps, which in turn alters
wave breaking and current patterns near the downdrift end of the beach.   Also,
during each iteration, measurements must be made at multiple transects to assess
the degree of alongshore uniformity that has been achieved.  More transects (i.e.,
more data) are desirable to ascertain the degree of alongshore uniformity that
exists.  But more time is required to make them, and during this time the beach is
responding to improper flow conditions.  Typically the process to converge on
the proper pump settings will require from 8 to 12 hr of run time. Depending on
the longshore transport rate, this may require remolding of the beach anywhere
from one to three times.  Beach remolding is a very time-consuming process, and
one to be minimized.

Equilibration of beach profile shape

Evolution of the beach to a near-equilibrium profile shape also requires time.
The time frame to reach a near-equilibrium beach profile condition depends on
the degree to which the preexperiment profile is out of equilibrium with the
incident wave conditions and the rate of sediment transport.  The goals of
arriving at an equilibrium beach profile shape and of establishing the proper
pump settings are accomplished concurrently.  Usually, the beach must be
remolded several times during this process.

Figure 71 illustrates profile evolution for the irregular wave case that
produced plunging-type breakers.  Profile measurements were made near the
center of the beach.  A number of profiles are shown.  The different curves
shown in the figure correspond to different elapsed times relative to the starting
time.  Included in the figure are the pretest profile, profiles measured at the
conclusion of numerous test runs that varied in duration from 40 to 100 min,
profiles measured before and after beach rebuilding, and the profile shape after
10.5 hr (630 min) of wave activity.  After approximately 180 min, the beach had
evolved to its near-equilibrium state for these incident wave conditions.
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Figure 71. Evolution of beach profile shape for the plunging-breaker case

Note that the pretest profile had a break-point bar that is approximately 1 m
seaward of, and in deeper water than, the bar on the near-equilibrium profile.  A
larger incident wave height was used initially in the plunging-breaker
experiment.  However, the location of incipient wave breaking was too close to
the offshore-most flow channels.  Therefore, a decision was made to reduce the
incident wave height.  The position and shape of the bar evolved fairly rapidly in
response to the change in wave height, reaching the near-equilibrium condition
after only a few hours.  The inner portions of the profile changed relatively little,
compared to the dramatic changes observed in the bar region.  The profile shape
that was molded initially, for the plunging-breaker experiment, was the
equilibrium profile shape that was produced by the irregular waves that had a
similar incident significant wave height but were characterized by spilling
breakers.

The beach profile shape for the spilling breaker case evolved to its near-
equilibrium condition more slowly, taking approximately 14 hr.  The difference
is attributed to the fact that the initial profile for this case was molded to a
theoretical equilibrium profile shape, approximated by a series of planar beach
sections.  Evolution to equilibrium required much more movement of sand from
the inner- and midsurf zone to the offshore.  Evolution to equilibrium for the
plunging-breaker case primarily involved sand movement in the bar region.

Steadiness and repeatability of measurements

Process measurements were made for 10-min sampling intervals.  The
instrumentation bridge was stationary at one alongshore coordinate during each
10-min interval.  To obtain measurements at other cross-shore transects, the
bridge was repositioned and measurements were acquired for another 10-min
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interval.  The number and location of transects can be programmed in advance,
repositioning of the bridge can be handled automatically, and movement from
one location to another is done rather quickly.  Acquisition of data at five
transects in this manner takes approximately 1 hr.

Four FOBS arrays were available, which occasionally required repositioning.
To obtain sediment concentration data at a denser spatial resolution in the cross-
shore direction, sensor arrays had to be manually repositioned along the bridge,
and 10-min test segments had to be repeated.  Also, since the current sensors
measure velocity at only one elevation in the water column, repositioning of the
sensors was required to make measurements for characterizing the vertical
current structure.  Measurements at other elevations required manual adjustment
of the sensor elevation.  Manual repositioning of sensors increased the amount of
time needed to make measurements.  Approximately 2 to 2.5 hr were required to
obtain velocity measurements at eight or nine positions throughout the water
column, at one alongshore location.

Making measurements over this length of time raises questions concerning
measurement repeatability and steadiness of hydrodynamic conditions.  In
Chapter 9, measurements made during fixed-bed concrete beach experiments,
which lasted for several hours, showed that conditions were steady during the
experiment duration.  Figure 72 shows the mean longshore current measured at a
number of cross-shore locations at transect Y22 (near the center of the beach at
the alongshore coordinate of 22 m).  Measurements were made at the beginning
(Y22a), middle (Y22b), and end (Y22c) of an approximately 2-hr-long wave run
designed to acquire a high alongshore density of cross-shore transects and to
examine steadiness of the mean longshore current for the spilling breaker case.
The curve labeled �LB�s� in the legend refers to the lateral boundary conditions,
i.e. the pumped discharges converted to current speed.  Results show that for the
movable-bed case, steadiness in mean longshore current is good.  Gaps in the
measured data reflect sensor malfunctions.

The issue of measurement repeatability is related but different, in the sense
that steadiness refers to conditions within a single wave run or test segment,
whereas, repeatability refers to variations from test to test for the same beach,
wave, and current conditions.  To examine repeatability, measurements were
made at the same transect and then compared for a number of wave runs in which
a near-equilibrium beach condition existed, and wave/current forcing was held
constant.  Figures 73 and 74 show measured significant wave height for both the
spilling- and plunging-breaker wave cases, respectively.  Measurements were
made near the center of the beach (at alongshore coordinates of 22 m for the
spilling case, and 24 m for the plunging case).  The beach was at its near-
equilibrium profile shape in both instances.  Repeatability in wave measurements
is good from run to run.
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Figure 72. Repetitive measurements of mean longshore current during a single-
wave run

Figure 73. Measurements of significant wave height for successive wave runs at
the same cross-shore transect for the spilling-breaker case
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Figure 74. Measurements of significant wave height for successive wave runs at
the same cross-shore transect for the plunging-breaker case

Figures 75 and 76 show results for the mean longshore current.  Results
suggest repeatability was good for the spilling-breaker case, considering the fact
that small irregularities in the beach exist for each case (the beach does not have
exactly straight and parallel contours).  Also, small changes in topography might
occur between runs as a result of the evolution toward equilibrium or due to
beach perturbations that are created during the remolding process, which only
can be performed to a certain level of accuracy and resolution.  Results for the
plunging-breaker case are not as good.  This is attributed to the nonuniformities
that developed in the region of the break-point bar.  The beach was remolded
after case T3g to a condition in which the bottom contours were straight and
parallel in the bar region.  Upon exposure to waves and currents, perturbations
began to develop in the bar region and changed with time, i.e., from case to case.

Figure 77 illustrates the repeatability in sediment concentration
measurements for the spilling-breaker case. The top panel shows measurements
made in the incipient breaker zone, and the lower panel shows measurements
from the midsurf zone.  Concentrations are mean values, averaged over a 10-min
sampling interval.  Repeatability is reasonable and is, in general, better for higher
concentrations that are measured closer to the bottom than for low concentration
values measured higher in the water column.  At elevations within 5 cm of the
bed, where most of the longshore sediment flux occurs, mean concentrations are
repeatable to within about +/- 25 percent.
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Figure 75. Measurements of mean longshore current for successive wave runs
at the same cross-shore transect for the spilling-breaker case

Figure 76. Measurements of mean longshore current for successive wave runs
at the same cross-shore transect for the plunging-breaker case
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Figure 77. Measurements of sediment concentration for successive wave runs at
the same cross-shore transect for the spilling-breaker case (top panel
shows measurements from incipient breaker zone; bottom panel
shows measurements from midsurf zone)

Figure 78 shows concentration measurements for the plunging-breaker case
that were made at a position in the incipient breaker zone.  In general, a greater
degree of variability from run to run is evident for this wave condition.  This also
is attributed to differences in beach morphology that existed in the bar region for
each of the cases.  Repeatability in LST rates, based on trap measurements, is
discussed later in this chapter.
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Figure 78. Measurements of sediment concentration for successive wave runs at
the same cross-shore transect for the plunging-breaker case (top
panel shows measurements from incipient breaker zone; bottom
panel shows measurements from midsurf zone)

Observed Beach Response

Spilling-breaker case

Chapter 5 discussed procedures for molding the sand to produce a beach that
has straight and parallel bathymetric contours.  Figure 79 illustrates the condition
of the beach after exposure to 6 hr of wave and current forcing for the
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spilling-breaker wave case.  This wave case was expected to produce a slightly
erosive condition, characterized by loss of sand from the beach face and offshore
movement of that sand, which did occur.  At the beginning of this 6-hr wave run,
the beach had already been subjected to numerous hours of wave action, had
essentially reached its equilibrium profile shape, and had been remolded to the
equilibrium profile shape with straight and parallel contours. The upstream
boundary is located on the right hand side of the figure; and the sediment traps
are located along the left side of the figure.  Sand is transported alongshore, from
right to left.  Beach contour elevations are reported in tenths of meters, relative to
the still-water line, which has an elevation of 0.0 m.

Figure 79. Beach morphology after 6 hr of wave activity for the spilling-breaker
case (elevations are in meters)

The effect of not introducing sand to the updrift boundary is clearly evident
in Figure 79.  Along the offshore portion of the updrift boundary, where the
magnitude of longshore transport was rather low, the perturbation is very abrupt
and is only evident within a distance of 1 to 2 m from the boundary.  However,
the perturbation extends a distance of 5 to 8 m from the boundary in the middle
and inner regions of the surf zone, where the LST rates were higher.  Where the
deficit-induced perturbation transitions into the region of beach where straight
and parallel contours are maintained, several undulations in beach morphology
are evident.  The undulations developed during every wave run following
remolding of the beach.  The reason for their occurrence is not definitely known.
However, the difference in orientation between the updrift wave-guide (15 deg)
and the angle of wave incidence at the wave generators (10 deg) is suspected to
be a contributing factor. The difference in angle was imposed in an attempt to
compensate for wave energy that is lost through the updrift wave guide, thereby
minimizing the alongshore extent of the current recirculation area that formed
near the shoreline due to this energy loss.
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Along the shoreline, between alongshore coordinates of 33 and 39 m, the
foreshore beach slope is much narrower than along the rest of the shoreline
(evident by more closely-spaced contours).  A scarp formed along the seaward
face of the beach berm in this region.  No scarp was created along the rest of the
shoreline.  This anomalous erosion zone is also caused by the lack of a sediment
supply at the updrift end of the beach.  A peak in distribution of LST rate
occurred in the swash zone.

Bathymetric contours remained reasonably straight and parallel between the
alongshore coordinates of 15 and 30 m.  This is the same region that had the
highest degree of alongshore uniformity in terms of longshore currents for the
concrete beach tests.  These two observations are probably related.

Along the downdrift boundary, slight changes in contour orientation are
evident within several meters of the boundary.  This is evidence that there is
some anomalous erosion and/or accretion along this lateral boundary. The traps
are not 100 percent efficient.  These anomalies must be accounted for in
estimates of LST rates that are derived from the trap weight measurements.  The
process for doing so is discussed in more detail later in this chapter.

In the offshore region, where the magnitude of the LST rate was low, the
contours remained straight and parallel up to a point about 1 m away from the
downdrift boundary.  There, localized erosive perturbations are evident.

In the midsurf zone accretion fillets are evident, and the alongshore distance
from the boundary that is affected increases with increasing proximity to the
shoreline.  The trap measurements indicated that the local LST rate increased
with increasing proximity to the shoreline.  This suggests that the magnitude of
the accretive perturbation increases with increasing longshore sand transport rate.
The same observation was noticed at the updrift boundary.

At the shoreline, an accretionary fillet is evident, but superimposed on it is a
slight localized erosive area directly adjacent to the downdrift boundary.  This is
attributed to interactions of wave uprush with the bricks that comprise the
adjustable downdrift beach template.  The brick template holds the sand beach in
place, preventing it from sloughing off into the sediment traps.  In the foreshore
zone, slight erosional perturbations are also evident.  These seem to form for the
same reason, interaction of wave uprush with the lateral boundary, which is
discussed in more detail later in this chapter.

Figure 80 shows the condition of the same beach after exposure to nearly
four additional hours of essentially the same wave and current conditions.  The
beach morphology seen in Figures 79 and 80 is quite similar.  The erosion
perturbations at the updrift end of the beach grew in severity as would be
expected, since no sand was supplied; but the alongshore extent of the
perturbation did not change appreciably.  At the downdrift end of the beach, the
regions of localized accretion and erosion did not change much during the
additional 4 hr.  The perturbations seemed to reach a near-equilibrium condition,
presumably with sand being transported into the traps more efficiently once this
condition is reached.
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Figure 80. Beach morphology after nearly 10 hr of wave activity for the spilling-
breaker case (elevations are in meters)

Figure 81 shows the cumulative change in beach elevation for this same case
during the 10 hr of exposure to the same spilling-type breaking waves. Elevation
changes are given in meters.  The loss of sand from the updrift end of the beach
is quite evident; beach elevation decreased by 0.1 m or more in the high-loss
areas.  Figure 81 clearly shows the alongshore extent of the perturbations both in
the offshore region and along the beach, and how the extent varies with cross-
shore position.  The figure shows that the inshore portion of the profile (yellow-
shaded region) continued to lose between 0 and 2 cm of elevation, while the
offshore bar gained sand at about the same rate (green-shaded region).  This
appears to be a consequence of the continued approach toward an equilibrium
beach condition, albeit at a much slower rate that that observed in the early stages
of profile evolution.  The maximum bottom elevation increase, associated with
accretion along the downdrift boundary, was about 0.04 m.
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Figure 81. Change in morphology after nearly 10 hr of wave activity for the
spilling-breaker case (elevation changes are in meters)

Plunging-breaker case

Figure 82 illustrates the condition of the beach after approximately 3.3 hr of
wave activity, in response to the plunging-type breaking waves and associated
longshore currents.  This figure shows the bathymetric change that occurred.  The
wave conditions were expected to produce a pronounced breakpoint bar, which
they did.  These plunging wave conditions produced about 2.6 to 2.7 times more
longshore sand transport, compared to the spilling-breaker wave case; and the
cross-shore distribution of longshore transport was quite different.  The plunging-
breaker case produced two peaks in the LST distribution, one at the breaker zone
and one in the foreshore.  The spilling-breaker case produced a distribution in
which the magnitude of LST monotonically increased with increasing proximity
to the shoreline, reaching its peak value in the foreshore.

In many ways, beach changes observed during the plunging-breaker case
were similar to those observed for the spilling-breaker case; but there were some
differences.  In the most offshore portion of the updrift end of the beach, a slight
erosion perturbation is evident in Figure 82, and it is confined to a relatively
short distance away from the edge of the beach.  This same observation was
noted for the spilling-wave case.
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Figure 82. Beach morphology after nearly 10 hr of wave activity for the plunging-
breaker case (elevations are in meters)

As was found for the spilling wave case, the erosion perturbation is evident
along nearly the entire updrift boundary.  In the vicinity of the bar, the
perturbation is greatest in magnitude and in terms of extent from the boundary.
The perturbation influences the orientation and crest elevation of the bar in this
region.  A peak in the longshore transport distribution existed in the vicinity of
the bar for the plunging-breaker case.  As was found for the spilling-wave case,
the magnitude and alongshore extent of the erosion perturbation was greatest in
areas where the LST rate was highest.  For the plunging wave case there is
erosion of the shoreline along the updrift boundary, and the upper beach slope
contours are narrowed, as was seen for the spilling wave case.  Foreshore and
shoreline erosion perturbations appear to extend further downdrift than was
observed in the spilling-breaker case, approximately to the 30-m alongshore
coordinate, consistent with the fact that high transport rates were evident in the
swash zone for the plunging-breaker wave case.

Unlike the spilling-breaker case, no well-defined undulatory morphologic
features existed at the point where the updrift erosion perturbations transition to
the section of beach having relatively straight and parallel contours.  Bottom
contours in the vicinity of the bar show much more irregularity than offshore
contours in the same depths measured in the spilling wave case.  The bar evolved
after remolding, and this evolution is believed to explain the lower degree of
repeatability in process measurements that were made for the plunging-breaker
case.  With the exception of the bar region, beach contours are reasonably
straight and parallel between the alongshore coordinates of 15 and 30 m.

Along the downdrift boundary of the beach, a slight erosional perturbation
exists along the offshore end of the beach, as was seen for the spilling-breaker
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case.  Along much of the rest of the surf zone, an accretional fillet is evident,
with the fillet at the bar location being the most pronounced.  This location
corresponds to the peak in the distribution of the LST rate.  The presence of a
pervasive accretion fillet also was observed for the spilling wave case.  Near the
shoreline, an erosion perturbation is evident, not an accretion fillet.  This is
different from the spilling-wave case. Its occurrence is attributed to the more
active swash zone associated with the longer-period waves and the stronger
interaction of wave uprush associated with the bricks used to construct the
downdrift profile template.

Alongshore Uniformity of Processes

Beach profile shape

For both the spilling- and plunging-breaker cases, reasonably straight and
parallel contours were maintained in the region of beach between alongshore
coordinates of 15 and 30 m.  This is the same region that had the greatest degree
of alongshore uniformity, in terms of waves and mean currents, for the fixed-bed
concrete-beach experiments.  A slight bar feature formed in the vicinity of the
incipient breaker line, in the region between cross-shore coordinates of 13 and 16
m in for the spilling-breaker case.  A pronounced break-point bar formed in
nearly the same location for the plunging-breaker case.  Both cases had a similar
incident wave height, but peak periods differed substantially.  Throughout most
of the mid- and innersurf zones, beach profile shapes were quite similar.  The
foreshore beach slope was slightly greater for the plunging wave case.

Figures 83 and 84 illustrate the alongshore variability in beach profile shape
for the spilling and plunging-wave cases, respectively.   The beach profiles
depicted in these figures were measured after the beach had reached an
equilibrium condition (or very nearly so) and the proper mean longhore currents
were being pumped.  The upper panel in each figure shows beach profiles, at 1-m
intervals, between the alongshore coordinates of 15 and 30 m.  Note that the still
water level is at an elevation of 0.9 m.  The lower panel shows the mean profile
shape computed from all profiles in this section of the beach, along with
envelopes representing +/- one standard deviation of elevation difference
between the various profiles and the mean profile.  The degree of alongshore
uniformity is high, particularly for the spilling-breaker case.  Uniformity for the
plunging wave case is also good, but there is more alongshore variability in the
vicinity of the bar.  This is also evident in Figure 82, which shows the beach
contours for this case.

Waves and currents

Figures 85 and 86 illustrate the degree of alongshore uniformity in significant
wave height, and Figures 87 and 88 illustrate uniformity in mean longshore
current, for the spilling and plunging wave cases, respectively.  The proper
longshore current was being pumped in both cases.  Wave and current parameters
displayed in the figures were computed for a 10-min sampling record.  The
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Figure 83. Alongshore variation in beach profile shape for the spilling-breaker
case (in the upper panel, still-water level is at an elevation of 0.9 m)
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Figure 84. Alongshore variation in beach profile shape for the plunging-breaker
case (in upper panel, still-water level is at an elevation of 0.9 m)

�Y�� locations listed in the legend indicate the alongshore coordinate, in
meters.  Most process measurements (waves, currents, and sediment
concentration) were made in the region where the beach had the highest degree
of alongshore uniformity, between alongshore coordinates of 15 and 30 m.  In
this region, the degree of alongshore uniformity in terms of these hydrodynamic
parameters is good, and comparable to that which was achieved for the fixed-bed,
concrete-beach experiments.

Significant wave heights generally varied within the range of plus or minus
10 percent of the mean values computed using data from all transects.
Variability is greatest in the incipient breaking zone.  Significant wave height
along one of the transects was noticeably different for the plunging-breaker case.
Otherwise, a similar degree of longshore variability was observed in both spilling
and plunging wave cases. Variability was higher for the plunging-breaker case in
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the offshore portion of the beach profile, which is consistent with the higher
degree of bathymetric variability in the bar region.  Variability in the innersurf
zone was much less.

Mean longshore currents generally varied within plus or minus 20 percent of
the mean computed for all transects, except in the offshore tail of the distribution
and very near the shoreline where variability was much greater.  Overall, the
degree of alongshore uniformity in hydrodynamic parameters was good, but
slightly less than that achieved for the concrete-beach experiments.  This was
expected as a result of the mobility of the bed, irregularities in beach
morphology, and recognized imperfections in lateral boundary conditions.

Figure 85. Alongshore variation in significant wave height for the spilling-breaker
case
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Figure 86. Alongshore variation in significant wave height for the plunging-
breaker case

Figure 87. Alongshore variation in mean longshore current for the spilling-
breaker case
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Figure 88. Alongshore variation in mean longshore current for the plunging-
breaker case

Sediment concentration

Figures 89 and 90 illustrate the degree of alongshore uniformity in measured
sand concentration for the spilling- and plunging-breaker cases, respectively.
Both the top and bottom panels of each figure show the temporally averaged
sediment concentration (a mean computed for a 10-min record) as a function of
elevation within the water column at a number of transects along the beach.
Measurements were repeated three times at each transect for the spilling breaker
case, and those data also are shown in Figure 89.  At each alongshore position,
concentrations are given for two locations, one in the incipient breaker zone (top
panel in each figure), and one in the midsurf zone (bottom panel in each figure).
Note that the vertical axis is plotted using a logarithmic scale.

For the spilling-breaker case, concentrations varied by 20 to 40 percent of the
mean value in the alongshore direction for measurements made in the zone of
incipient wave breaking.  Variability was higher in the midsurf zone, with
variability ranging from 30 to 90 percent of the mean.  A similar result was found
for the plunging-breaker case.  In the incipient breaker zone, variations were
generally 10 to 30 percent of the mean, with variability approaching 50 percent
for a few sensors.  In the midsurf zone, variability generally ranged from 30 to
45 percent of the mean, with some sensors differing by as much as 120 percent
(near the surface in this instance).  Variability in measured mean concentration is
much higher than variability in gross wave and current parameters.  This suggests
that concentration measurements from a number of transects should be averaged,
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to represent sediment concentrations throughout the region having the highest
alongshore uniformity.

Figure 89. Alongshore variation in time-averaged mean sediment concentration
for the spilling-breaker case (top panel shows results from the
incipient breaker zone; bottom panel shows results from the midsurf
zone)
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Figure 90. Alongshore variation in time-averaged mean sediment concentration
for the plunging-breaker case (top panel shows results from the
incipient breaker zone; bottom panel shows results from the midsurf
zone)

Performance of the Sand Traps
Several issues related to trap effectiveness were raised and discussed in

Chapter 8:  The quantity of sand that remains suspended in the water column and
is transported past the traps, accumulation of sand on the rubber neoprene seals
around the periphery of each trap (both sides and the updrift edge), and
corrections to the trapped quantities that must be made as a result of anomalous
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be considered in deriving estimates of the LST rate.  The maximum error
associated with sand that bypasses the trap is about 2.5 percent, but this
magnitude of error occurs only in flow channels with the highest longshore
transport rates (high longshore currents and high levels of sand entrainment).
Measurements to quantify this error were made under some of the most energetic
wave and current conditions that are to be generated in the facility.  In most
channels, especially those in the vicinity of the shoreline, the error is much less
than this value.  Therefore, sand bypassing should only have minimal influence
on the estimates of LST.  The last two issues are discussed in more detail here,
because they are potentially the largest sources of error in the measurements of
trap weight, and consequently, estimates of LST that are made based on the
weight of sand that accumulates in the traps.

Sand accumulates on the neoprene rubber seals around the periphery of the
sand traps.  Figure 91 provides a representative example of the magnitude of
these quantities, as a percentage of the total weight that accumulated in the traps,
for the plunging-breaker case.   Two quantities are shown: one represents sand
that accumulated on the side seals, and one reflects sand that accumulated on the
front, or updrift, seal.  Generally, the quantity of sand that deposits on the updrift
seal greatly exceeds that which accumulates on the side seals.   However, for a
few of the traps shown in the figure, the two quantities are comparable.  The
updrift seals do not have uniform surface areas.  Generally, the total quantity that
accumulates on all rubber seals is about 3 to 12 percent of the total that actually
settles into the trap. As seen in the figure, the percentage of sand accumulating on
the seals can approach 15 to 20 percent in individual traps.  Results shown in
Figure 91 are similar to those observed for the spilling breaker case (see
Figure 52).

Earlier in this chapter, the anomalous 3-D beach evolution that occurred at
the downdrift boundary was discussed.  These anomalies must be accounted for,
as corrections to the measured trap weights, to maximize the accuracy of
computed LST rates.  The extent and magnitude of the anomalies change with
cross-shore position; therefore, the magnitude of the corrections varies with
cross-shore position.  In general, anomalies were restricted to the region of beach
within 1 to 3 m of the downdrift boundary.  The method used to correct trap
weights is illustrated using Figure 92, and described below.

Figure 92 shows the total volume change on each of the beach profiles
measured between the alongshore coordinates of 11 and 44 m (representing the
entire length of beach).  Profiles were measured at 0.5-m intervals.  A persistent
pattern of volume loss is evident at the updrift end of the beach, between
alongshore coordinates of 32 and 44 m, which arises because no sand is
introduced at the updrift boundary during the experiments.  Between alongshore
coordinates of 16 and 32 m, small changes are evident but no persistent volume
gains or losses are obvious.  This is the region where the highest degree of
longshore uniformity in process measurements is observed, and the region where
the bathymetric contours remain nearly straight and parallel.  At the downdrift
end of the beach, between alongshore coordinates of 11 and 16 m, larger volume
changes are evident. Volume changes in this zone are assumed to be anomalous
and caused by lateral boundary imperfections.  These volume changes are used to
develop corrections to the quantities of sand that accumulate in the traps.
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Figure 91. Weight of sand that accumulated on the rubber seals around the
traps

Figure 92. Volume change computed for each profile

Within each 0.75-m cross-shore section of beach in this anomalous zone
(0.75 m is the width of each flow channel), the measured trap volume for that
channel is adjusted to reflect the anomalous volume change within that section of
beach. Trap weights are converted to volume by considering the porosity of wet
sand that accumulates in the traps (porosity of 0.40 is assumed).  Generally,
volume changes between the downdrift boundary and the alongshore coordinate
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of 15 m are considered.  Where anomalous erosion occurs, the correction is
subtracted from the volume that accumulates in the trap; where accretion occurs,
the correction is added to the volume in the trap.  All trapped quantities are
corrected in this manner.

Figures 93 and 94 show the total rate of LST, with and without these
corrections, for spilling- and plunging-breaker cases, respectively. Results for a
number of wave runs, or test cases, are shown in each figure.  In each figure, all
tests involve the same wave forcing, and are shown in chronological order.  Early
runs, T1a through T1g, and T3a through T3i_case 1, involve iterations to
determine the proper pump settings, and are not relevant to this discussion.

Figure 93. Total LST rates computed with and without corrections to account for
anomalous volume change adjacent to the downdrift boundary for the
spilling-breaker case

In Figure 93, run T1h is the first run in which the �proper� mean longshore
currents were pumped in all flow channels for the spilling-breaker case.
Subsequent runs, T1h_case1 through T1h_case4 were made for various purposes,
but with the same mean longshore current distribution as run T1h.  Cases
T1h_case5 through T1h_case10, were made with nearly the same mean
longshore currents as cases 1 through 4, but currents were modified slightly to
correct for small changes in mean beach profile shape.  Theoretically, the total
corrected transport rates for cases T1h through T1h_case4 should be the same,
and results for cases T1h_case 5 though T1h_case10 should be very similar,
perhaps with slight differences.  It is important to note that the beach was rebuilt
prior to cases T1h_case 4 and T1h_case8.
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Figure 94. Total LST rates computed with and without corrections to account for
anomalous volume change adjacent to the downdrift boundary for the
plunging-breaker case

Results show that corrections made to compensate for anomalous beach
change immediately adjacent to the downdrift boundary can be as much as
25 percent of the total LST rate.  Another result is that the magnitude of the
correction seems to be greatest just after the beach is remolded.  The anomalies
in beach bathymetry appear to develop quickly after the beach is remolded, and
then with time, a near-equilibrium condition seems to develop in which the
anomalies don�t grow as fast, or grow very little.  Note the lower magnitude of
the correction prior to remolding that was done after T1h_case3, and the large
correction immediately thereafter in T1h_case4 and T1h_case5.  Also note the
trend for the magnitude of the correction to decrease between the tests,
T1h_case8 and T1h_case10, after the beach was remolded prior to T1h_case8.

A similar result was found for the plunging-breaker case (Figure 94).  The
beach was remolded prior to case T3g, and with subsequent runs, the magnitude
of the correction decreased.  Again, the magnitude of the correction was as much
as 25 percent of the total volume that accumulated in the traps.  For run
T3g_case3, malfunctions of the profiler precluded computation of corrections to
the trap weights.

Repeatability of LST Rates
Results shown in Figures 93 and 94 also illustrate the degree of repeatability

that can be expected in estimates of the total LST rate.  Total transport rate
estimates for the spilling breaker case ranged from 2,350 to 2,950 m3/yr.  Of the
nine estimates made under what were essentially the same forcing conditions, six
fell in the range from 2,600 to 2,850 m3/yr.  The mean value for all estimates is
about 2,700 m3/yr, which implies that estimates of total LST are repeatable, to
within 10 to 12 percent, and more likely within about 4 to 6 percent for this wave
condition.
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For the plunging-breaker case, total LST rates varied from 6,500 to
7,700 m3/yr, with a mean of about 7,200 m3/yr.  Variability was similar, ± 7 to 10
percent.  Repeatability for the total LST rate is considered to be good.

Figures 95 and 96 show cross-shore distributions of corrected LST rates for
both the spilling and plunging wave cases, respectively.  In both figures, wave
runs that should produce nearly the same transport rate distributions are shown.
The general shape of the distribution was reproduced in all cases.  The degree of
repeatability in the distribution of LST also is considered to be good, but not
quite as good as the total LST rate.  At most locations, local estimates of LST
generally vary by 10 to 25 percent about a mean value for all the wave runs.
More variability is evident near the incipient breaker zone and in the zone closest
to the shoreline.

Figure 95. Cross-shore distribution of the LST rate for the spilling-breaker case

The variability of LST estimates in the nearshore zone is worth commenting
on.  Estimates in this region are considered to have the greatest degree of error
and the lowest degree of repeatability, for a number of reasons.  The foreshore
zone is characterized by a relatively steep beach and is rather energetic as a result
of the presence of the wave uprush and downrush.  An adjustable brick template
is used to hold the sand beach in place across the entire profile.  Ceramic
�pavers� having different thickness (1.4- and 2.8-cm) and standard construction
bricks (5.6-cm thickness) are used to construct the template.  The thinner pavers
are used along most of the profile to provide better resolution for matching the
natural beach elevations.  In the energetic swash zone, the template is constructed
mostly of standard-sized bricks so that they will not move when impacted by up-
rush bores.  For both the spilling- and plunging-breaker cases, the pavers were
not stable on the foreshore slope.  Consequently the brick template is a rather
crude approximation of the steep slope, and most importantly, edges of bricks are

0

100

200

300

400

500

600

-5 0 5 10 15
Distance from Shoreline (m)

Lo
ng

sh
or

e 
Se

di
m

en
t F

lu
x 

(m
3 /m

/y
r)

adjusted T1h_case 1&2
T1h_case 3
adjusted T1h_case 4
adjusted T1h_case 5
adjusted T1h_case 8
adjusted T1h_case 9



152 Chapter 10     Longshore Sediment Transport Experiments

Figure 96. Cross-shore distribution of the LST rate, for the plunging-breaker
case

exposed.  Wave uprush interacts with the bricks and induces sediment suspension
and transport.  Depending on the sequencing and strength of uprush and
downrush bores, sediment can be carried into any of the most landward traps.
The distributions reflect considerable variability in sediment fluxes within the
two or three most landward traps.  The degree of variability is much more
significant for the plunging wave case, presumably because the swash zone was
much more energetic due to the longer wave periods.  Corrections are made to
trapped quantities in the swash zone to account for any anomalous erosion of the
foreshore.
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11 Conclusions

A large-scale facility for investigating nearshore and surf zone sediment
transport processes has been constructed and successfully applied.  The facility
provides the Corps of Engineers with a capability for studying longshore sand
transport at scales that are much larger than the scales at which previous
laboratory research has been conducted to examine these processes.  The LSTF is
state-of-the-art in terms of the systems that have been built for generating
relatively large-scale laboratory waves (four phase-synchronized electric-motor-
driven wave generators), pumping and recirculating the longshore current (20
independent and separately controlled pump and piping networks for accurate
control of the cross-shore distribution of the current), measuring the quantity of
sand that moves along the beach (20 instrumented sediment traps), and a fully
programmable instrumentation bridge and data acquisition system that includes
10 ADV current sensors, 10 capacitance-type wave gauges, four FOBS arrays,
and an automated beach profiling system.  All facility components were designed
to maximize accuracy of data acquired in movable-bed experiments and
minimize the amount of human labor (and time) required to perform them.

Two comprehensive test series were conducted on an planar concrete beach,
one involving regular waves and the other irregular waves.  These data are
valuable for several reasons:  (a) the geometric scale of the experiments is
significantly larger than the scale of laboratory experiments conducted in the
past; (b) the concrete beach has a relatively mild 1:30 slope, unlike previous
laboratory experiments; (c) both regular and irregular wave forcing were used;
and (d) the vertical velocity structure of the longshore current was accurately
measured using ADVs.  These data are provided for use in theoretical studies and
for calibration and verification of analytical and numerical models.

The pump settings that produced the proper longshore current distribution in
the LSTF were determined through an iterative process based on mean longshore
current measurements in the surf zone and offshore in the internal recirculation
zone. This procedure worked well.  When the proper distribution is pumped, the
degree of longshore uniformity in mean longshore current increases noticeably,
and the magnitude of the current offshore in the recirculation zone approaches a
minimum value.  Internal recirculation cannot be completely eliminated,
however, and its magnitude was about 10 percent of the total flow rate in the surf
zone for the two wave cases examined on the concrete beach.

The final selection of proper pump settings was confirmed by the insightful
criteria developed by Visser (1991).  But unlike the findings of Visser for the
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facility he used, for the LSTF, Qp can vary by as much as +20 percent of Qpu
without a significant increase in Qr.  For this reason, emphasis during the iterative
process is placed on examination of the measured data, taking advantage of the
high degree of cross-shore resolution in the recirculation system itself.  However,
even for this range of Qp the inshore two-thirds of the mean longshore current
distribution was relatively unaffected by Qr.  The effect of internal recirculation,
Qr manifested itself primarily on the offshore tail of the measured longshore
current distribution. Therefore, tuning of the longshore current focused on the
inshore portion of the distribution first, saving the offshore tail for last.
Measured currents in the offshore tail were always higher than the equivalent
pump settings, regardless of the magnitude because of the internal recirculation
in the region offshore of the surf zone.

The active external longshore current recirculation system and the
operational procedure used to pump the proper current, led to a 12-m long region
of the beach that was characterized by a very high degree of longshore
uniformity in waves, currents, and mean water levels, between Y (longshore)
coordinates of 19 and 31 m.  The standard deviation of the longshore variation in
longshore current is still relatively small downstream to Y = 14 m, at the
downdrift boundary.

Two experiments that involved a movable-bed quartz-sand beach, which had
a very narrow distribution of grain sizes and a median grain diameter of 0.15
mm, were successfully conducted.  Irregular wave conditions were generated in
each experiment.  The first involved wave conditions that produced
predominantly spilling-type wave breaking.  In the second experiment
predominantly plunging breakers were generated.  For both experiments, waves
having a similar significant wave height were adopted.  The type of wave
breaking was controlled by use of a different wave period.

Each experiment was comprised of a series of tests, or runs.  Initial tests were
conducted to iterate toward the proper longshore current distribution in the
presence of a movable bed and to allow the beach profile shape to reach an
equilibrium, or near-equilibrium, condition.  Iterative procedures that were
determined from the concrete-beach experiments were successfully applied to the
movable-bed experiments.  Subsequent wave runs involved acquisition of data to
examine: alongshore variability in processes, steadiness, and repeatability of
measurements and estimates of local and total LST rates, and investigate the
vertical structure of currents and sediment concentration.

Results suggest that breaker-type and beach morphology exert a strong
influence on the total LST rate and its cross-shore distribution.  More LST
occurred for the plunging wave case than for the spilling wave case, despite both
cases having approximately the same incident wave height and direction (the
former LST rate was 2.6 to 2.7 times greater than the latter).  The cross-shore
distribution of LST for each case was different.  For the spilling-breaker case, the
magnitude of the LST rate gradually increased with increasing proximity to the
shoreline, and a local peak in the distribution existed in the swash zone.  For the
plunging-breaker case, a local peak in the LST distribution existed at the
breakpoint bar that was produced.  A second peak existed in the swash zone, as
was found for the spilling-breaker case, but the magnitude of the swash zone
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transport was much higher as a result of the steeper beach slope and much more
energetic swash zone that developed for waves having longer periods.  In the
midsurf zone, the local rates of LST were similar for the two wave cases.

As was found for the concrete-beach experiments, there was a region of the
movable-bed beach that was characterized by a reasonably high degree of
alongshore uniformity in waves, currents, and sediment concentration, between Y
(alongshore) coordinates of 15 and 30 m.  The downdrift boundary is not perfect
though, and imperfections lead to sand trap efficiencies that are not 100 percent.
Slight accretion or erosion anomalies developed adjacent to the downdrift
boundary, and these anomalies must be accounted for in deriving estimates of
LST rates.  Accurate and dense survey data are required to compute the
corrections.  Errors associated with sand bypassing the traps were rather small.

The steadiness of mean flow conditions, quality of the sensors, and
repeatability of the measurements allow accurate data sets to be acquired, not
only of wave, current (at one depth), and water elevation parameters, but also the
vertical structure of the mean current and sediment concentration fields.
Sediment concentration measurements were more variable than wave and current
measurements, probably because of the small differences in local morphology
that exist throughout the beach.  Mean values computed from several adjacent
transects are recommended for characterizing the vertical structure of sediment
concentration.  Overall, steadiness and repeatability of the hydrodynamic
conditions allowed high-quality data sets of suspended sand concentrations and
longshore sediment transport rates to be acquired.

The LSTF has proven to be an excellent and robust facility, and so far has
yielded unprecedented measurements of surf zone sediment transport processes
in a laboratory setting, including sand transported in suspension.  The potential
for making R&D advancements through the use of the facility is quite high.
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Appendix A
Hydrodynamic Data from
Fixed-bed Experiments

The primary data sets for Test 6N (regular waves) and Test 8E (irregular
waves) are provided in tabular form in Table A-1 and Table A-2, respectively.
Each table lists the measured mean longshore current at transects Y19, Y23, Y27,
and Y31, as well as the longshore-averaged value for these four transects, Vavg;
the still-water depth, d; the longshore-averaged value of wave setup or setdown,
ηavg, and wave height, Havg.  The energy-based significant wave height, listed for
Test 8E, is based on using a lower cutoff frequency of 0.2 Hz (i.e., 0.5 × Fp), to
remove the low-frequency energy from the water surface elevation time series.
The cross-shore (x-axis) positions of the measurements are listed in the standard
basin coordinates.  The still-water depth can be calculated as

d = x/30-0.1, for 3.0 m < x < 18.0 m (A-1)

d = x/18 �0.5, for 18.0 m < x < 21.0 m (A-2)

d = 0.667 m, for x > 21.0 m (A-3)

Table A1
Primary Data Set from Regular Wave Test 6N
X-Loc.
m

Y19
m/s

Y23
m/s

Y27
m/s

Y31
m/s

Vavg
m/s

d
m

ηavg
m

Havg
m

4.12 0.297 0.338 0.302 0.188 0.281 0.037 0.025 0.047
5.72 0.401 0.422 0.392 0.397 0.403 0.091 0.020 0.077
7.12 0.417 0.421 0.426 0.434 0.424 0.137 0.012 0.101
8.62 0.368 0.392 0.390 0.342 0.373 0.187 0.001 0.131
10.12 0.323 0.301 0.305 0.312 0.3210 0.237 -0.006 0.190
11.52 0.173 0.145 0.154 0.169 0.160 0.284 -0.010 0.254
13.12 0.060 0.058 0.075 0.090 0.071 0.337 -0.013 0.235
14.62 0.016 -0.005 0.031 0.046 0.022 0.387 -0.012 0.209
15.62 -- -- -0.007 -- -0.007 0.421 -- --
16.12 -- -- -- -- -- 0.437 -0.013 0.206
16.85 -- -- -- -- -- 0.462 -0.010 0.203
18.00 -- -- -- -- -- 0.500 -0.011 0.190

.
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Table A2
Primary Data Set from Irregular Wave Test 8E
X-Loc.
m

Y19
m/s

Y23
m/s

Y27
m/s

Y31
m/s

Vavg
m/s

d
m

ηavg
m

Hmo-avg
m

4.12 0.188 0.227 0.207 0.154 0.194 0.037 0.016 0.053
5.72 0.303 0.326 0.316 0.306 0.313 0.091 0.013 0.082
7.12 0.326 0.341 0.333 0.346 0.337 0.137 0.006 0.107
8.62 0.297 0.313 0.298 0.309 0.304 0.187 0.001 0.138
10.12 0.270 0.277 0.267 0.267 0.270 0.237 -0.001 0.167
11.52 0.228 0.233 0.226 0.221 0.227 0.284 -0.004 0.185
13.12 -- -- -- -- -- 0.337 -0.008 0.206
13.88 0.122 0.128 0.121 0.125 0.124 0.363 -- --
14.62 -- -- -- -- -- 0.387 -0.009 0.214
16.12 0.038 0.012 0.010 0.031 0.023 0.437 -0.010 0.224
16.85 -- -- -- -- -- 0.462 -0.008 0.227
18.00 -- -- -- -- -- 0.500 -0.007 0.232

Table A-3 provides a number of other measured and calculated wave and
water level quantities in the surf zone, where h is the longshore-averaged mean
water depth (equal to d + η), η is the mean water surface elevation, ηm is the
maximum value of wave setup, estimated by linear extrapolation, γ is the surf
zone averaged value of H/h, and the subscript, �br�, refers to values at the
breaker line.  The breaking wave angle, θbr, was estimated using Snell�s law.

For the regular wave case, the breaking point is assumed to be the point
where the measured wave height reaches its maximum value.  For the irregular
wave case, the breaking point was assumed to be the point where the measured
significant wave height began to decrease at the highest rate (Figure 68).  This
occurred at the location x = 13.1 m, where the longshore-averaged significant
wave height was 0.21 m.

Estimates of the position of the mean waterline are x = 2.1 m for the regular
wave case and x = 2.4 m for the irregular wave case.  It should be noted that the
cross-shore position of the mean waterline could only be estimated with an
accuracy of approximately +0.1 m.  Therefore, the estimates of maximum wave
setup are only accurate to within + 0.003 m.

Table A3
Summary of Wave and Water Level Conditions in the Surf Zone

Test
Hbr
m

hbr
m

Hbr/hbr
-

γ
-

Θbr
deg

Xbr
m

ηm
m

X-Loc.
at ηm
m

X-Loc
at SWL
m

Test 6N 0.254 0.274 0.93 0.74 6.7 11.5 0.033 2.1 3.00
Test 8E 0.206 0.329 0.63 0.75 7.3 13.1 0.021 2.4 3.00

Figure A-1 shows the cross-shore variation in the vertical structure of the
mean longshore current for the regular wave case (Test 6N).  In general, the
mean longshore current is rather uniform with depth.  In the innersurf zone
(ADV 1 through ADV 5), there is a slight increase in current speed with distance
from the bed, and outside the surf zone (ADV 7 and 8) a slight decrease in
current speed with distance from the bed.  Visser (1991)1 measured similar trends
in the vertical velocity structure using regular waves.  Putrevu and Svendsen
                                                      
1 References are listed in section following main text.
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(1992) presented a theoretical model that predicts similar trends in the vertical
velocity structure.  ADV 6 was located at the position of incipient wave breaking.

Figure A-2 shows the vertical structure of the mean longshore current for the
irregular wave case (Test 8E).  The mean longshore current in this case is also
rather uniform with depth.  In the innersurf zone (ADV 1 through ADV 6), there
is a slight increase in current speed with distance from the bed, and the vertical
variations are similar to those measured for the regular wave case.  In the outer
surf zone (ADV 7 and 8), the mean velocity is relatively invariant with depth.
This trend is different from that in the regular wave case, where the mean
velocity decreased slightly with increasing distance from the bottom.  However,
in the regular wave case, no waves were breaking at ADV 7 and 8; whereas in
the irregular wave case, some wave breaking occurred in this region.

Figure A1. Test 6N: Vertical structure of the mean longshore current at Y27
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Figure A2. Test 8E: Vertical structure of the mean longshore current at Y27
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Appendix B
Photographs of the Large-
scale Sediment Transport
Facility

Figure B1. The concrete beach has a 1:30 slope.  The beach was constructed as
far updrift as possible so that the sand falls into the traps before
reaching the pumps used to recirculate the longshore current
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Figure B2. Four piston-type wave generators are shown with the facility drained.
Each wave board is 7.62 m long and is oriented at 10 deg to shore-
normal in this figure. The wave generators can be positioned within
the range of 0 through 20 deg relative to shore-normal

Figure B3. The instrumentation bridge is 21 m long and spans the entire width of
the beach.  The offshore support rail is located at the far right in this
photograph.  The bridge is designed to support wave gauges,
current meters, optical backscatter sensors, and an automated
beach profile indicator. The bridge also functions as an observation
platform
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Figure B4. Wave gauges and current meters are co-located at various
distributions across the width of the surf zone.  The height and
orientation of the current meters can be readily adjusted using the
vertical mounting mechanisms shown in the figure

Figure B5. The offshore wave gauges are mounted to stainless steel tripods
along the toe of the sand beach.  There are four offshore wave
gauges, one centered in front of each wave generator.  This
photograph is viewed from upstream.  An electronics technician is
inspecting one of the wave gauges while the facility is drained
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Figure B6. The 20 vertical turbine pumps are mounted inside of the 20
independent sumps to ensure vortex free operation at maximum
discharge.  Each sump was constructed of reinforced concrete and
has dimensions:  cross-shore = 0.75 m, longshore = 1.5 m, and
depth = 1.2 m

Figure B7. Each pump in the Longshore Current recirculation system pumps
water through one of two parallel pipelines. One is for low-flow
conditions, the other is for high-flow conditions. The water passes
through a valve and then through a flow sensor (from right to left). A
0.3-m-long  ruler is shown for scale just upstream of the smaller flow
sensor
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Figure B8. Pump No. 10 forces through either a 50- or a 100-mm-diam in-line
flow sensor. The forward-swept design of the impellers, as well as
the absence of magnetic drag, provides improved accuracy and
repeatability at low flow rates. A 0.3-m-long wooden ruler indicates
the physical size of the components

Figure B9. View of the wave guide at the downstream end of the beach. The
bottom edge of the wave guide was installed at approximately the
minimum wave trough elevation for the maximum wave condition
that can be generated in the facility. Hence, the height of the
opening beneath the wave guide increases in the offshore direction
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Figure B10. View of the wave guide at upstream end of the beach. The opening
beneath the wave guide is 0.15 m high along the entire length of the
wave guide. A matrix of polyvinyl chloride pipe, behind the wave
guide, directs the externally recirculated current onto the beach

Figure B11. A matrix of PVC pipe was installed immediately upstream of each
vertical turbine pump to absorb residual wave energy and to
minimize wave reflection in the flow channels. Low-crested weirs
were installed in each flow channel to help block any sand that
passes over the sediment traps, before it reaches the pumps
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Figure B12. Two 400-mm-diam polyvinyl chloride pipes were installed in the
concrete beach, to passively recirculate the longshore current that
flows in the swash zone. The two �swash zone traps� (i.e., sand trap
No. -1, and -2) can be seen in the bottom right corner of the figure

Figure B13. An overall view of the facility after the sand beach has been graded
to have straight and parallel depth contours. The sediment traps can
been seen near the bottom, with the adjustable boundary along the
interface between the sand beach and the sediment traps. Once the
tractor is driven out of the facility, the gate is closed and the facility
is filled with water to begin an experiment
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